Problem K. King's Palace

Input file:	standard input
Output file:	standard output
Time limit:	6 seconds
Memory limit:	1024 mebibytes

There are N walls in the hall of the King's palace, numbered by integers from 1 to N. The King asks the Royal Painter to paint each wall in one of three colors (red, green, or blue). Additionally, the King gives M orders.

Every order has the following form: given two walls, a_{i} and b_{i}, and two colors, x_{i} and y_{i}, the order dictates that, if the wall a_{i} is painted with color x_{i} and the wall b_{i} is painted with color y_{i}, the Royal Painter has to be executed.

Your task is to find a number of ways to paint the walls so that the Royal Painter will not be executed.

Input

The first line of the input contains two integers N and $M(1 \leq N \leq 22,1 \leq M \leq 9 \cdot N \cdot(N-1) / 2)$: the number of walls and the number of orders, respectively.

Each of the following M lines describes one King's order and contains an integer a_{i}, a letter x_{i}, an integer b_{i}, and a letter y_{i}, separated by single spaces ($1 \leq a_{i}<b_{i} \leq N, x_{i}$ and y_{i} are letters from ' R ', ' G ', and ' B ', denoting the red, green, and blue colors, respectively). You may assume that all M orders are pairwise distinct (no two orders have the exact same effect).

Output

Print one integer: the number of ways to paint the walls so that the Royal Painter will not be executed.

Examples

standard input	standard output
23	6
1 R 2 R	
1 G 2 R	
1 B 2 G	
10	3
220	31381059609
412	13
2 R 3 R	
1 B 2 B	
2 R 3 B	
3 R 4 R	
1 B 4 G	
1 R 3 B	
3 G 4 B	
2 G 3 G	
1 B 2 R	
1 G 2 R	
1 R 3 G	
1 G 3 B	

