## Problem C. AND PLUS OR

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 3 seconds |
| Memory limit: | 1024 mebibytes |

For two nonnegative integers $a, b$, let $a \wedge b$ be their bitwise AND, and $a \vee b$ be their bitwise OR.
You are given an array $A_{0}, A_{1}, \ldots, A_{2^{N}-1}$ of length $2^{N}$ consisting of nonnegative integers. Please find a pair of indices $0 \leq i, j \leq 2^{N}-1$ such that $A_{i}+A_{j}<A_{i \wedge j}+A_{i \vee j}$, or state that no such pair exists. If there is more than one such pair, find any one of them.

## Input

The first line contains an integer $N(0 \leq N \leq 20)$.
The second line contains $2^{N}$ integers: $A_{0}, A_{1}, \ldots, A_{2^{N}-1}\left(0 \leq A_{i} \leq 10^{7}\right)$.

## Output

If there is an answer, output two integers $i$ and $j$ denoting the answer. The numbers $i$ and $j$ should be in the range $\left[0,2^{N}-1\right]$. Otherwise, output -1 .

## Examples

|  | standard input |  |  | standard output |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 2 | -1 |  |  |
| 2 | 1 | 2 | 2 | 1 |  |
| 0 | 1 | 1 | 3 | -1 |  |
| 0 |  | -1 |  |  |  |
| 100 |  |  |  |  |  |

