Problem F. Lag

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
8 seconds
1024 mebibytes

You are using Paint on an old Windows computer. The screen of Paint is a grid with cells called pixels. The coordinates of the bottom left pixel are $(1,1)$, and the coordinates of the pixel that is in a-th column from the left and b-th row from the bottom are (a, b). On the initial screen, N rectangles with vertical and horizontal sides are drawn. A rectangle with bottom left pixel $\left(x_{1}, y_{1}\right)$ and top right pixel $\left(x_{2}, y_{2}\right)$ contains all pixels (x, y) such that $x_{1} \leq x \leq x_{2}$ and $y_{1} \leq y \leq y_{2}$.

A total of M move commands will be performed on N rectangles. The movement of the rectangle is represented by direction and distance. Each direction is one of the following: east, west, south, north, northeast, northwest, southeast, and southwest (the latter four are 45 degrees to the horizontal axis). Each distance is a positive integer d.

Suppose that the original coordinates of the bottom left pixel of the rectangle are (a, b). A movement by a distance of d in the east, north, west, and south directions causes this pixel to move toward the coordinates $(a+d, b),(a, b+d),(a-d, b)$, and $(a, b-d)$, respectively. In addition, a movement by a distance of d in the northeast, northwest, southwest, and southeast directions causes this pixel to move toward the coordinates $(a+d, b+d),(a-d, b+d),(a-d, b-d)$, and $(a+d, b-d)$, respectively.

Moving by distance d of the rectangle R on the screen is implemented by quickly displaying the shape of R every time when R moves by distance 1 . However, our computer is very old, so moving R is very laggy. As a result, all of the R drawn in the movement of R remains on the screen. Therefore, if R moves by the distance d, d rectangles are newly created on the screen. For example, if the rectangle moves in the northeast direction by a distance of 3,3 rectangles are created, leaving a total of 4 rectangles on the screen. Of course, after moving, the rectangle at the northeast end becomes R.

After executing M move commands, Q queries will be given. Each query is given as a pixel p on the plane. Print the number of rectangles containing the pixel p as the answer to the query.

Input

The first line contains three integers N, M, and $Q(1 \leq N \leq 250000,0 \leq M \leq 250000,1 \leq Q \leq 250000)$.

Each of the next N lines contains four integers x_{1}, y_{1}, x_{2}, and y_{2}, denoting a rectangle with bottom left pixel $\left(x_{1}, y_{1}\right)$ and top right pixel $\left(x_{2}, y_{2}\right)\left(1 \leq x_{1} \leq x_{2} \leq 250000,1 \leq y_{1} \leq y_{2} \leq 250000\right)$.
Each of the next M lines contains three integers v_{i}, x_{i}, and d_{i}, denoting that the x_{i}-th rectangle moved in the direction v_{i} by distance $d_{i}\left(0 \leq v_{i} \leq 7,1 \leq x_{i} \leq N, 1 \leq d_{i} \leq 250000\right)$.

The directions are:

- $0:(+1,0)$
- $1:(+1,+1)$
- 2: $(0,+1)$
- 3: $(-1,+1)$
- $4:(-1,0)$
- $5:(-1,-1)$
- 6: $(0,-1)$
- $7:(+1,-1)$

Each of the next Q lines contains two integers x and y, denoting the query on pixel (x, y).
All coordinates are positive integers between 1 and 250000 . Any pixels contained in a rectangle at any time satisfy these constraints. Queried pixels also satisfy these constraints.

Output

For each queried pixel, output a single integer denoting the number of rectangles containing the given pixel.

Examples

		standard input	
1	8	3	standard output
2	1	2	1
0	1	1	
1	1	1	2
2	1	1	1
3	1	1	
4	1	1	
5	1	1	
6	1	1	
7	1	1	
1	1		
2	1		
4	2		
2	0	3	1
3	3	7	7
4	4	6	6
5	5		
3	7		
8	8		

