Problem G. Critical Vertex

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	1024 mebibytes

You are given a connected undirected graph G with N vertices and M edges where vertices are numbered from 1 to N and edges are numbered from 1 to M.

For each vertex v, if the graph is disconnected after the vertex v is removed, we call v a critical vertex. Note that the original connectedness of the graph does not matter.
For each $i(1 \leq i \leq M)$, please compute the number of critical vertices in G when edge i is removed. Note that the removal is only temporary, and does not affect other queries.

Input

The first line contains two integers N and $M(2 \leq N \leq 250000,1 \leq M \leq 1000000)$.
In the next M lines, edges of the graph will be given. The i-th line contains two integers x_{i} and y_{i}, denoting the edge i connecting vertex x_{i} and vertex $y_{i}\left(1 \leq x_{i}, y_{i} \leq N, x_{i} \neq y_{i}\right)$. The graph may have multiple edges. The graph is connected.

Output

Output M lines. On the i-th line, output a single integer denoting the number of critical vertices in G when edge i is removed.

Example

	standard input		standard output
5	5	4	
1	5	2	
5	2	4	
2	3	4	
2	4	2	
2	5		

