

Problem G. Critical Vertex

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	1024 mebibytes

You are given a connected undirected graph G with N vertices and M edges where vertices are numbered from 1 to N and edges are numbered from 1 to M.

For each vertex v, if the graph is disconnected after the vertex v is removed, we call v a *critical* vertex. Note that the original connectedness of the graph does not matter.

For each $i \ (1 \le i \le M)$, please compute the number of critical vertices in G when edge i is removed. Note that the removal is only temporary, and **does not** affect other queries.

Input

The first line contains two integers N and M $(2 \le N \le 250\,000, 1 \le M \le 1\,000\,000)$.

In the next M lines, edges of the graph will be given. The *i*-th line contains two integers x_i and y_i , denoting the edge *i* connecting vertex x_i and vertex y_i $(1 \le x_i, y_i \le N, x_i \ne y_i)$. The graph **may have** multiple edges. The graph is connected.

Output

Output M lines. On the *i*-th line, output a single integer denoting the number of critical vertices in G when edge i is removed.

Example

standard input	standard output
5 5	4
1 5	2
5 2	4
2 3	4
2 4	2
2 5	