

Problem I. Streetlights

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	1024 mebibytes

There are N streetlights along the straight road. The initial height of the *i*-th streetlight is a positive integer A_i $(1 \le i \le N)$.

You are trying to install an electric wire between two streetlights. To install an electric wire between the streetlights i and j(>i), the following conditions must be satisfied:

- $A_i = A_j$,
- For every i < k < j, $A_k < A_i$.

The city may adjust the height of a streetlight Q times. Each adjustment is given as a pair of positive integers (x, h), which indicates that the height of x-th streetlight was adjusted to h. In other words, $A_x = h$.

Before the updates, and also after each update, find the number of pairs $1 \le i < j \le N$ such that you can install an electric wire between streetlights i and j.

Input

The first line contains two integers N and Q $(2 \le N \le 100\,000, 1 \le Q \le 250\,000)$.

The next line contains N integers A_1, A_2, \ldots, A_N $(1 \le A_i \le 10^9)$.

Each of the next Q lines contains two integers x and h, denoting that $A_x = h$ after the query $(1 \le x \le N, 1 \le h \le 10^9)$. It is guaranteed that h is different from the height of the x-th streetlight immediately prior to the requested update.

Output

Output Q + 1 lines. On the *i*-th line $(1 \le i \le Q + 1)$, output the number of pairs you can install an electric wire between after processing the first i - 1 update queries.

Example

standard input	standard output
6 2	3
4 2 2 2 4 6	2
4 6	2
6 4	