Problem J. Diameter Pair Sum

Input file:
Output file:
standard input
Time limit:
standard output
Memory limit:
5 seconds
1024 mebibytes

For an unweighted tree T, a simple path P is a diameter if there is no simple path longer than it. Two paths are different if some vertex is in one path but not the other.
Consider a set of paths D_{T} where $P \in D_{T}$ if and only if P is a diameter. Given two paths D and E, let $f(D, E)$ be the number of vertices that belong to both D and E.
You are given an undirected forest (a graph with no cycles) with N vertices and M edges. Process Q queries of the following form:

- "1 x y": Connect two vertices x and y with an edge $(1 \leq x, y \leq N)$. It is guaranteed that there is no path between x and y at the time of the query.
- "2 $x \quad y$ ": Remove an edge between two vertices x and $y(1 \leq x, y \leq N)$. It is guaranteed that such an edge exists at the time of the query.
- "3 x ": Let F be the connected component containing the vertex x. Output the value $\sum_{D \in D_{F}} \sum_{E \in D_{F}} f(D, E)$ modulo $10^{9}+7(1 \leq x \leq N)$.

Input

The first line of the input consists of three integers N, M, and $Q(2 \leq N \leq 100000,0 \leq M \leq N-1$, $1 \leq Q \leq 100000$).
Each of the next M lines consists of two integers x and y denoting an edge connecting vertices x and y $(1 \leq x, y \leq N, x \neq y)$. It is guaranteed that there are no cycles in the given graph.
Each of the next Q lines contains a query in the form described above.

Output

For each query of type 3 , output the answer modulo $10^{9}+7$.

Example

	standard input		standard output	
7	5	5	18	
1	2	64		
1	3	21		
2	4			
2	5			
3	6			
3	1			
1	3	7		
3	1			
2	2	1		
3	1			

