Problem K. Fake Plastic Trees 2

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	1024 mebibytes

You are given a tree with N vertices numbered from 1 to N. The tree is vertex-weighted. In other words, each vertex of the tree is assigned a nonnegative integer weight.

We will delete some edges from the tree. After the deletion, for each connected component, the sum of vertex weights should be in the range $[L, R]$.
For all integers $0 \leq i \leq K$, determine if we can achieve this goal by deleting exactly i edges.

Input

The first line contains a single integer T, the number of test cases. Then T test cases follow, each following the given specification:

The first line of each test case contains four integers N, K, L, and $R(1 \leq N \leq 1000$, $\left.0 \leq K \leq \min (50, N-1), 0 \leq L \leq R \leq 10^{18}\right)$.
The next line contains N integers $A_{1}, A_{2}, \ldots, A_{N}$, where A_{i} denotes the weight of vertex $i\left(0 \leq A_{i} \leq 10^{18}\right)$.
Each of the next $N-1$ lines contains two integers x, y, denoting the pair of vertices connected by an edge $(1 \leq x, y \leq N, x \neq y)$. It is guaranteed that the given graph is a tree.
For all test cases, the sum of N is at most 1000 .

Output

For each test case, output a binary string of length $K+1$. The i-th character should be ' 1 ' if it is possible to achieve the desired goal by deleting exactly $i-1$ edges. Otherwise, the i-th character should be ' 0 '.

Example

					standard input	
3				0111		
4	3	1	2		0011	
1	1	1	1			
1	2					
2	3					
3	4					
4	3	1	2			
1	1	1	1			
1	2					
1	3					
1	4					
4	3	0	0			
1	1	1	1			
1	2					
1	3					
1	4					

