

Problem K. Fake Plastic Trees 2

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	1024 mebibytes

You are given a tree with N vertices numbered from 1 to N. The tree is vertex-weighted. In other words, each vertex of the tree is assigned a nonnegative integer weight.

We will delete some edges from the tree. After the deletion, for each connected component, the sum of vertex weights should be in the range [L, R].

For all integers $0 \le i \le K$, determine if we can achieve this goal by deleting **exactly** *i* edges.

Input

The first line contains a single integer T, the number of test cases. Then T test cases follow, each following the given specification:

The first line of each test case contains four integers N, K, L, and R $(1 \leq N \leq 1000, 0 \leq K \leq \min(50, N-1), 0 \leq L \leq R \leq 10^{18}).$

The next line contains N integers A_1, A_2, \ldots, A_N , where A_i denotes the weight of vertex $i \ (0 \le A_i \le 10^{18})$.

Each of the next N-1 lines contains two integers x, y, denoting the pair of vertices connected by an edge $(1 \le x, y \le N, x \ne y)$. It is guaranteed that the given graph is a tree.

For all test cases, the sum of N is at most 1000.

Output

For each test case, output a binary string of length K+1. The *i*-th character should be '1' if it is possible to achieve the desired goal by deleting exactly i-1 edges. Otherwise, the *i*-th character should be '0'.

standard input	standard output
3	0111
4 3 1 2	0011
1 1 1 1	0000
1 2	
2 3	
3 4	
4 3 1 2	
1 1 1 1	
1 2	
1 3	
1 4	
4 3 0 0	
1 1 1 1	
1 2	
1 3	
1 4	

Example