Problem A. Two Trees

Input file:	standard input
Output file:	standard output
Time limit:	8 seconds
Memory limit:	256 mebibytes

Given are trees T_{1} and T_{2}. Each tree has n vertices numbered from 1 through n. Let $d(v, u, T)$ denote the number of edges on the path between vertices v and u in tree T. Calculate the following sum:

$$
\sum_{v=1}^{n} \sum_{u=1}^{n}\left(d\left(v, u, T_{1}\right)+d\left(v, u, T_{2}\right)\right)^{2}
$$

As the answer may be large, find it modulo 2^{32}.

Input

The first line contains one integer n : the number of vertices in each tree ($1 \leq n \leq 100000$).
Each of the next $n-1$ lines contains two integers, u and v, denoting an edge between vertices u and v in tree $T_{1}(1 \leq u, v \leq n)$.
Each of the last $n-1$ lines contains two integers, u and v, denoting an edge between vertices u and v in tree $T_{2}(1 \leq u, v \leq n)$.

Output

Print the answer modulo 2^{32}.

Examples

	standard input	standard output
3		24
1	2	
1	3	
1	2	
1	3	
3		22
1	2	
1	3	
1	2	
2	3	

