

Problem C. Inversions

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	256 mebibytes

For a permutation p, denote the number of inversions in it as inv(p). An inversion is a pair of indices $1 \le i < j \le |p|$ such that $p_i > p_j$.

Given are integers n and k. Find the sum of $inv(p)^k$ over all permutations p of length n. As the answer can be very large, find it modulo 998 244 353.

Input

The only line contains two integers, n and k $(1 \le n \le 10^{18}, 1 \le k \le 1000)$.

Output

Print the answer modulo 998 244 353.

Examples

standard input	standard output
3 2	19
5 3	22500

Note

In the first example:

In permutation (1, 2, 3), there are 0 inversions.

In (1, 3, 2), there is 1 inversion.

In (2, 1, 3), there is 1 inversion.

In (2,3,1), there are 2 inversions.

In (3, 1, 2), there are 2 inversions.

In (3, 2, 1), there are 3 inversions.

The answer is: $0^2 + 1^2 + 1^2 + 2^2 + 2^2 + 3^2 = 19$.