Problem C. Inversions

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	256 mebibytes

For a permutation p, denote the number of inversions in it as $\operatorname{inv}(p)$. An inversion is a pair of indices $1 \leq i<j \leq|p|$ such that $p_{i}>p_{j}$.
Given are integers n and k. Find the sum of $\operatorname{inv}(p)^{k}$ over all permutations p of length n. As the answer can be very large, find it modulo 998244353.

Input

The only line contains two integers, n and $k\left(1 \leq n \leq 10^{18}, 1 \leq k \leq 1000\right)$.

Output

Print the answer modulo 998244353.

Examples

	standard input	standard output
32	19	22500

Note

In the first example:
In permutation $(1,2,3)$, there are 0 inversions.
In $(1,3,2)$, there is 1 inversion.
In ($2,1,3$), there is 1 inversion.
In ($2,3,1$), there are 2 inversions.
In ($3,1,2$), there are 2 inversions.
In ($3,2,1$), there are 3 inversions.
The answer is: $0^{2}+1^{2}+1^{2}+2^{2}+2^{2}+3^{2}=19$.

