

Problem C. Even Forest

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	512 mebibytes

An undirected tree is called *even* if there is no simple path of odd length connecting two of its leaves. In particular, a tree with just one vertex is considered even.

You are given an undirected tree G with vertices numbered from 1 to n. A graph obtained by removing some (possibly none) of the edges of G is called a *forest*: it consists of one or more disjoint trees. Determine the minimum possible number k such that we can remove k edges of G in such a way that the resulting forest consists only of even trees.

Input

The first line contains one integer $n \ (1 \le n \le 10^6)$.

Each of the next n-1 lines contains two integers u_i and v_i $(1 \le u_i, v_i \le n)$ denoting an edge connecting vertex u_i and vertex v_i .

The graph is guaranteed to be a tree.

Output

Output the minimum number of edges k such that we can remove k edges of G in such a way that each tree in the resulting forest is even.

Examples

standard input	standard output
4	1
1 2	
2 3	
3 4	
4	0
1 2	
1 3	
1 4	