Problem C. Even Forest

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	512 mebibytes

An undirected tree is called even if there is no simple path of odd length connecting two of its leaves. In particular, a tree with just one vertex is considered even.
You are given an undirected tree G with vertices numbered from 1 to n. A graph obtained by removing some (possibly none) of the edges of G is called a forest: it consists of one or more disjoint trees. Determine the minimum possible number k such that we can remove k edges of G in such a way that the resulting forest consists only of even trees.

Input

The first line contains one integer $n\left(1 \leq n \leq 10^{6}\right)$.
Each of the next $n-1$ lines contains two integers u_{i} and $v_{i}\left(1 \leq u_{i}, v_{i} \leq n\right)$ denoting an edge connecting vertex u_{i} and vertex v_{i}.
The graph is guaranteed to be a tree.

Output

Output the minimum number of edges k such that we can remove k edges of G in such a way that each tree in the resulting forest is even.

Examples

	standard input	
4		1
1	2	standard output
2	3	
3	4	
4		
1	2	
1	3	4
1	4	

