## Problem G. Mismatch

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 4 seconds |
| Memory limit: | 512 mebibytes |

You are given an array $a_{1}, a_{2}, \ldots, a_{n}$ of $n$ nonnegative integers. For each $k$ from 1 to $n$, find the number of subsequences of size $k\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}} ; 1 \leq i_{1}<\ldots<i_{k} \leq n\right)$ such that their bitwise AND is equal to zero ( $a_{i_{1}} \wedge a_{i_{2}} \wedge \ldots \wedge a_{i_{k}}=0$ ). Since the answers can be very large, compute them modulo 998244353.
Two subsequences are considered distinct if there is an index $i$ such that the element $a_{i}$ is included in one of the subsequences but not the other.

## Input

The first line contains an integer $n\left(1 \leq n \leq 2^{19}\right)$. The second line contains $n$ integers $a_{1}, a_{2}, \ldots, a_{n}$ $\left(0 \leq a_{i}<2^{19}\right)$.

## Output

Print $n$ space-separated integers $b_{1}, b_{2}, \ldots, b_{n}$, where $b_{i}$ is the answer for $k=i$ modulo 998244353 .

## Examples

| standard input | standard output |
| :---: | :---: |
| $\begin{array}{lll} \hline & 3 & \\ & \\ 0 & 1 & 2 \end{array}$ | 131 |
| $\begin{array}{lllllll} 6 & & & & \\ 1 & 2 & 2 & 7 & 6 & 7 \end{array}$ | 0391051 |

