



## Problem G. Mismatch

| Input file:   | standard input  |
|---------------|-----------------|
| Output file:  | standard output |
| Time limit:   | 4 seconds       |
| Memory limit: | 512 mebibytes   |

You are given an array  $a_1, a_2, \ldots, a_n$  of n nonnegative integers. For each k from 1 to n, find the number of subsequences of size k  $(a_{i_1}, a_{i_2}, \ldots, a_{i_k}; 1 \le i_1 < \ldots < i_k \le n)$  such that their bitwise AND is equal to zero  $(a_{i_1} \land a_{i_2} \land \ldots \land a_{i_k} = 0)$ . Since the answers can be very large, compute them modulo 998 244 353.

Two subsequences are considered distinct if there is an index i such that the element  $a_i$  is included in one of the subsequences but not the other.

## Input

The first line contains an integer  $n \ (1 \le n \le 2^{19})$ . The second line contains n integers  $a_1, a_2, \ldots, a_n$  $(0 \le a_i < 2^{19})$ .

## Output

Print n space-separated integers  $b_1, b_2, \ldots, b_n$ , where  $b_i$  is the answer for k = i modulo 998 244 353.

## Examples

| standard input | standard output |
|----------------|-----------------|
| 3              | 1 3 1           |
| 0 1 2          |                 |
| 6              | 0 3 9 10 5 1    |
| 1 2 2 7 6 7    |                 |