Problem K. Spiral Matrix

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
5 seconds
512 mebibytes

Define a neighbouring pair of cells in a matrix as a pair of cells $\left(r_{a}, c_{a}\right)$ and $\left(r_{b}, c_{b}\right)$ such that:

- either $r_{a}=r_{b}$ and $\left|c_{a}-c_{b}\right|=1$,
- or $c_{a}=c_{b}$ and $\left|r_{a}-r_{b}\right|=1$.

Define a spiral matrix as a matrix which satisfies the following conditions:

- The matrix contains only distinct positive integers.
- One can start from some cell (i, j) and arrange all other cells in a path, so that every two consecutive cells in the path are a neighbouring pair, and by following the path from (i, j) and considering the values in the matrix, we form a continuous integer interval $[l . . r]$ in the order of visiting them.

Given is a matrix of size $n \times m$ consisting of distinct positive integers. We are also given q queries. Each query defines a submatrix with corners $\left(r_{1}, c_{1}\right)$ and $\left(r_{2}, c_{2}\right)$. For each query, determine whether this submatrix is spiral.

Input

The first line contains three integers n, m and $q\left(1 \leq n, m \leq 2000,1 \leq q \leq 10^{6}\right)$, denoting the size of the matrix and the number of queries, respectively.
Each of the next n lines contains m integers. The j-th integer on the i-th of these lines denotes the element $a_{i, j}$ located in the i-th row and j-th column of the matrix $\left(1 \leq a_{i, j} \leq 10^{9}\right)$. It is guaranteed that all elements are distinct.
Each of the next q lines contains four integers $r_{1}, c_{1}, r_{2}, c_{2}\left(1 \leq r_{1} \leq r_{2} \leq n, 1 \leq c_{1} \leq c_{2} \leq m\right)$, denoting the corners of a submatrix.

Output

For each query, print the answer on a separate line. Print "YES" if the submatrix is spiral, or "NO" otherwise.

Example

standard input	standard output
5710	NO
$\begin{array}{llllllll}10 & 11 & 12 & 13 & 14 & 15 & 16\end{array}$	YES
$\begin{array}{lllllll}9 & 2 & 3 & 32 & 31 & 30 & 17\end{array}$	NO
81425262918	YES
$\begin{array}{lllllll}7 & 6 & 5 & 24 & 27 & 28 & 19\end{array}$	YES
52515023222120	NO
1157	YES
1141	YES
2253	YES
1457	NO
1143	
1153	
2222	
2223	
3457	
3344	

