

Problem A. Soccer Match

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

As a big sports fan, you, the primary leader of the Pigeon Kingdom, are organizing a soccer match! A total of N players signed up for the match, and you plan to divide them into three groups: Red team, Blue team, and spectators. The number of players in the Red team and the Blue team **can** be different.

There are M pairs of friends among the N participants, where $M \ge 2KN$ for some given constant $K \ge 1$. The friendship is mutual, which means that if a is a friend of b, then b is a friend of a, and vice versa. To make the match more exciting, you want to make sure that each player in the Red team has at least K + 1 friends in the Blue team, and each player in the Blue team has at least K + 1 friends in the Red team. Can you find an arrangement satisfying such constraints?

Input

The first line contains one integer T ($1 \le T \le 50\,000$), denoting the number of test cases. For each test case:

The first line contains three integers, N, M, and K $(1 \le N, M, K \le 50\,000$ and $M \ge 2KN)$, denoting the number of players, the number of pairs of friends, and the given constant, respectively.

Then M lines follow, each containing two integers u and v $(1 \le u < v \le N)$, denoting that u and v are friends.

It is guaranteed that, in each test case, each pair of (u, v) appears at most once, and the sum of M over all test cases does not exceed 50 000.

Output

For each test case, output two lines:

The first line begins with one integer R, denoting the number of players in the Red team. Then R space-separated integers follow, each denoting the index of a player in the Red team.

The second line follows the same format. It begins with an integer B, denoting the number of players in the Blue team. Then B space-separated integers follow, each denoting the index of a player in the Blue team.

If there are multiple solutions, you can output any one of them. It can be shown that, under such constraints, a solution always exists.

Example

standard input	standard output
2	3 2 3 4
5 10 1	2 1 5
1 2	3 2 8 10
1 3	2 1 9
1 4	
1 5	
2 3	
2 4	
2 5	
3 4	
3 5	
4 5	
10 20 1	
1 2	
2 3	
3 4	
4 5	
5 6	
6 7	
78	
8 9	
9 10	
1 10	
1 4	
4 7	
7 10	
3 10	
3 6	
6 9	
2 9	
2 5	
5 8	
1 8	