Problem A. Soccer Match

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

As a big sports fan, you, the primary leader of the Pigeon Kingdom, are organizing a soccer match! A total of N players signed up for the match, and you plan to divide them into three groups: Red team, Blue team, and spectators. The number of players in the Red team and the Blue team can be different.
There are M pairs of friends among the N participants, where $M \geq 2 K N$ for some given constant $K \geq 1$. The friendship is mutual, which means that if a is a friend of b, then b is a friend of a, and vice versa. To make the match more exciting, you want to make sure that each player in the Red team has at least $K+1$ friends in the Blue team, and each player in the Blue team has at least $K+1$ friends in the Red team. Can you find an arrangement satisfying such constraints?

Input

The first line contains one integer $T(1 \leq T \leq 50000)$, denoting the number of test cases. For each test case:

The first line contains three integers, N, M, and $K(1 \leq N, M, K \leq 50000$ and $M \geq 2 K N)$, denoting the number of players, the number of pairs of friends, and the given constant, respectively.
Then M lines follow, each containing two integers u and $v(1 \leq u<v \leq N)$, denoting that u and v are friends.

It is guaranteed that, in each test case, each pair of (u, v) appears at most once, and the sum of M over all test cases does not exceed 50000 .

Output

For each test case, output two lines:
The first line begins with one integer R, denoting the number of players in the Red team. Then R space-separated integers follow, each denoting the index of a player in the Red team.

The second line follows the same format. It begins with an integer B, denoting the number of players in the Blue team. Then B space-separated integers follow, each denoting the index of a player in the Blue team.

If there are multiple solutions, you can output any one of them. It can be shown that, under such constraints, a solution always exists.

Example

standard input	standard output
2	3234
5101	215
12	32810
13	219
14	
15	
23	
24	
25	
34	
35	
45	
10201	
12	
23	
34	
45	
56	
67	
78	
89	
910	
110	
14	
47	
710	
310	
36	
69	
29	
25	
58	
18	

