Problem B. Gachapon

Input file:
Output file:
standard input
Time limit:
Memory limit:
standard output
5 seconds
512 mebibytes

According to Wikipedia, "a gacha game is a video game that implements the gacha (toy vending machine) mechanic". Similar to loot boxes, gacha games induce players to spend in-game currency to receive a random virtual item.

One of these gacha games is called Step-up Gacha, which means that the player's chances of rolling a rare item are increased each time they roll. For example, the phenomenal game Genshin Impact ensures that you can always draw out four-star items or characters in any ten consecutive rolls.

It would be helpful if we give an abstraction to these rolling rules. Consider a game with 0 -star, 1 -star, \ldots, m-star items. Assume that the probability of drawing out an i-star item in a single roll is $\frac{a_{i}}{\sum_{j=0}^{m} a_{j}}$. A single draw is a level 0 rolling, and a rolling of level k consists of exactly b_{k} rounds of level $(k-1)$ rollings. The highest level of a rolling is n.
A level k rolling is legal if it ensures the following:

- at least one item with at least k stars is drawn,
- for all b_{k} level $(k-1)$ rollings it contains, at least one item with at least $(k-1)$ stars is drawn,
- ...and so on, down to each level 0 rolling (which is a single draw), for which at least one item with at least 0 stars is drawn trivially.

Let p_{i} be the expected number of i-star items drawn out from a legal n-level rolling, and let q be the probability that an n-level rolling is legal. Find the values p_{i} and q. To avoid unpleasant huge numbers and divisions by zero, for all $0 \leq i \leq m$, you should only output the value $\left(p_{i} \cdot q\right) \bmod 998244353$.

Input

The first line contains two integers m and n : the maximum number of stars and the highest level of a rolling ($1 \leq n \leq m \leq 4000$).

The second line contains $m+1$ integers $a_{0}, a_{1}, \ldots, a_{m}$: the frequencies of rolling items with $0,1, \ldots, m$ stars $\left(1 \leq a_{i} \leq 4000\right)$.
The third line contains n integers $b_{1}, b_{2}, \ldots, b_{n}$: the number of previous level rollings in a rolling of level $1,2, \ldots, n\left(2 \leq b_{i} \leq 4000\right)$.

Output

Output $m+1$ lines. The i-th line should contain a single integer: the value of $\left(p_{i-1} \cdot q\right) \bmod 998244353$.

Examples

standard input	standard output
$\begin{array}{lll} \hline 2 & 1 & \\ 1 & 1 & 1 \\ 3 & & \end{array}$	$\begin{aligned} & 554580197 \\ & 1 \\ & 1 \end{aligned}$
$\begin{array}{lll} \hline 2 & 1 & \\ 89 & 10 & 1 \\ 10 & & \end{array}$	$\begin{aligned} & 989586456 \\ & 1 \\ & 299473306 \end{aligned}$
$\begin{array}{lll} \hline 3 & 2 & \\ 1 & 1 & 2 \end{array} 1$	$\begin{aligned} & \hline 58137752 \\ & 260406016 \\ & 517809313 \\ & 758026833 \end{aligned}$

Note

In the first example, the answers in rational form are: $\frac{8}{9}, 1,1$.

