Problem D. Station

Input file:	standard input
Output file:	standard output
Time limit:	4.5 seconds
Memory limit:	1024 mebibytes

There are n bus stations and n bus lines along the main street of City A. The bus stations are labeled from 1 to n from left to right, and the importance of station i is a_{i}. The bus lines are also numbered from 1 to n. A bus of line k stops at stations whose importance is greater than or equal to k. Each bus line operates in both directions.

A tourist standing at station x can take any bus that stops at station x, pick a direction, and go to the next station y visited by that bus in that direction (of course, it is only possible if such station exists). The cost of such trip is l_{x} yuan if $y<x$, or r_{x} yuan if $y>x$. Tourists can take multiple bus trips to reach their destination.
Now there are q tourists, and the j-th tourist wants to travel from station s_{j} to station t_{j}. Your task is to find the minimum cost of the route for each tourist.
It is guaranteed that, for each i from 1 to $n-1$, the following are true: $l_{i} \leq l_{i+1}$ and $r_{i} \geq r_{i+1}$.

Input

The first line of input contains a single integer T, the number of test cases $\left(1 \leq T \leq 3 \cdot 10^{4}\right)$. The descriptions of test cases follow.
The first line of each test case contains two integers n and q : the number of stations and the number of tourists $\left(1 \leq n, q \leq 3 \cdot 10^{5}\right)$.
The second line contains n integers a_{1}, \ldots, a_{n}, where a_{i} is the importance of station $i\left(1 \leq a_{i} \leq n\right)$.
Then follow n lines, the i-th of which contains two integers l_{i} and r_{i} : the costs at station $i\left(1 \leq l_{i}, r_{i} \leq 10^{9}\right.$, $\left.l_{i} \leq l_{i+1}, r_{i} \geq r_{i+1}\right)$.
Then follow q lines, the j-th of which contains two integers s_{j} and t_{j} : the endpoints of a route for j-th tourist $\left(1 \leq s_{j}, t_{j} \leq n\right)$.
The sum of n and the sum of q over all test cases do not exceed $3 \cdot 10^{5}$.

Output

For each tourist, output a line with the answer.

Example

standard input	standard output
1	33
96	9
173499122	6
111	8
111	17
511	0
710	
86	
84	
83	
91	
101	
19	
51	
31	
76	
26	
11	

