

Problem D. Station

Input file:	standard input
Output file:	standard output
Time limit:	4.5 seconds
Memory limit:	1024 mebibytes

There are n bus stations and n bus lines along the main street of City A. The bus stations are labeled from 1 to n from left to right, and the importance of station i is a_i . The bus lines are also numbered from 1 to n. A bus of line k stops at stations whose importance is greater than or equal to k. Each bus line operates in both directions.

A tourist standing at station x can take any bus that stops at station x, pick a direction, and go to the **next** station y visited by that bus in that direction (of course, it is only possible if such station exists). The cost of such trip is l_x yuan if y < x, or r_x yuan if y > x. Tourists can take multiple bus trips to reach their destination.

Now there are q tourists, and the j-th tourist wants to travel from station s_j to station t_j . Your task is to find the minimum cost of the route for each tourist.

It is guaranteed that, for each i from 1 to n-1, the following are true: $l_i \leq l_{i+1}$ and $r_i \geq r_{i+1}$.

Input

The first line of input contains a single integer T, the number of test cases $(1 \le T \le 3 \cdot 10^4)$. The descriptions of test cases follow.

The first line of each test case contains two integers n and q: the number of stations and the number of tourists $(1 \le n, q \le 3 \cdot 10^5)$.

The second line contains n integers a_1, \ldots, a_n , where a_i is the importance of station $i \ (1 \le a_i \le n)$.

Then follow n lines, the *i*-th of which contains two integers l_i and r_i : the costs at station i $(1 \le l_i, r_i \le 10^9, l_i \le l_{i+1}, r_i \ge r_{i+1})$.

Then follow q lines, the j-th of which contains two integers s_j and t_j : the endpoints of a route for j-th tourist $(1 \le s_j, t_j \le n)$.

The sum of n and the sum of q over all test cases do not exceed $3 \cdot 10^5$.

Output

For each tourist, output a line with the answer.

Example

standard input	standard output
1	33
96	9
173499122	6
1 11	8
1 11	17
5 11	0
7 10	
8 6	
8 4	
8 3	
9 1	
10 1	
1 9	
5 1	
3 1	
7 6	
2 6	
1 1	
	1