Problem G. Trans

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Bob is interested in popcount and some strange transforms. Currently, he is attacking the following problem:
There is an array of 2^{n} integers $a_{0}, a_{1}, a_{2}, \ldots, a_{2^{n}-1}$. The task is, for each $i\left(0 \leq i \leq 2^{n}-1\right)$, to calculate

$$
b_{i}=\sum_{j=0}^{2^{n}-1}(\operatorname{popcount}(i \operatorname{and} j) \bmod 2) \cdot a_{j},
$$

where "popcount (x) " denotes the number of ones in the binary representation of x, and "and" denotes the bitwise AND operation.

Although Bob is very smart, he still can't solve the problem fast. Can you help him calculate all b_{i} ?

Input

The first line contains a single integer $n(1 \leq n \leq 20)$.
The second line contains 2^{n} integers describing the array $a\left(1 \leq a_{i} \leq 10^{9}\right)$.

Output

Print one line with 2^{n} integers, the i-th of them being the value b_{i}.

Example

standard input			standard output			
2	2	3	4	0675		

