Problem D. Diameter Two

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

You are building a computer network for a new company. The network consists of n nodes numbered from 1 to n. The nodes can be connected via bidirectional wires. Each wire connects exactly two nodes. Each pair of nodes can be connected with at most one wire. If a wire connects two nodes, we'll say that these two nodes are directly connected.

The first k nodes (with indices $1,2, \ldots, k$) will be untrusted and must be connected to the network securely. Each of these nodes must be directly connected to exactly one other node.
The remaining $n-k$ nodes (with indices $k+1, k+2, \ldots, n$) will be trusted and must be connected to the network reliably. Each of these nodes must be directly connected to at least two other nodes.
The diameter of the network must not exceed 2: for any two nodes i and j, they must either be directly connected, or there must exist a node k such that nodes i and k are directly connected, and nodes k and j are directly connected.
To minimize the costs, the number of used wires must be as small as possible.
Build a network satisfying all the conditions above, or report if this is impossible.

Input

Each test contains multiple test cases. The first line contains the number of test cases $t(1 \leq t \leq 50)$. Description of the test cases follows.

The only line of each test case contains two integers n and k, denoting the total number of nodes and the number of untrusted nodes, respectively ($3 \leq n \leq 50 ; 0 \leq k \leq n$).

Output

For each test case, if it is impossible to build a network satisfying the given conditions, print a single integer -1 .
Otherwise, in the first line, print the number of used wires m. In each of the following m lines, print two integers u_{i} and v_{i}, denoting the indices of the nodes connected with the i-th wire ($1 \leq u_{i}, v_{i} \leq n ; u_{i} \neq v_{i}$).

Example

	standard input		standard output
3	0	3	
5	2	1	2
	1	3	
	2	3	
	5		
		3	3
	2	3	
	3	4	
	3	5	
	4	5	
	-1		

