Problem H. Hundred Thousand Points

Input file:	standard input
Output file:	standard output
Time limit:	10 seconds
Memory limit:	512 mebibytes

You have placed n points on a plane at coordinates $(1,0),(2,0), \ldots,(n, 0)$.
Informally, for each i, you draw an angle of a_{i} degrees from vertex $(i, 0)$ in a direction chosen uniformly at random and independently from other angles.
Formally, for each i, a real variable $\alpha_{i} \in[0 ; 360)$ is chosen uniformly at random, and the angle is formed by two rays drawn from the point $(i, 0)$ at polar angles of α_{i} and $\alpha_{i}+a_{i}$ degrees. The interior of the angle consists of all points located at polar angles strictly between α_{i} and $\alpha_{i}+a_{i}$ degrees from the point $(i, 0)$.
Two angles are considered intersecting if there exists a point belonging to the interiors of both angles.
Find the probability that no two angles intersect, modulo 998244353 (see the Output section for details).

Input

The first line contains a single integer $n\left(2 \leq n \leq 10^{5}\right)$.
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq 179\right)$.

Output

Print the probability that no two angles intersect, modulo 998244353.
Formally, let $M=998244353$. It can be shown that the required probability can be expressed as an irreducible fraction $\frac{p}{q}$, where p and q are integers and $q \not \equiv 0(\bmod M)$. Print the integer equal to $p \cdot q^{-1} \bmod$ M. In other words, print such an integer x that $0 \leq x<M$ and $x \cdot q \equiv p(\bmod M)$.

Examples

standard input	standard output
2	686292993
9090	982646785
309090	795861094
3	

Note

In the first example test, the actual probability is $\frac{5}{16}$.
In the second example test, the actual probability is $\frac{1}{64}$.
In the third example test, the actual probability is $\frac{347}{5184}$.

