Problem I. Implemented Incorrectly

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 mebibytes

Consider the following problem:

- You are given a permutation $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ containing each integer from 1 to n exactly once. Find its only cyclic shift that starts with 1.

Consider the following algorithm to solve it:

- Input: $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$.
- For each $i=2,3, \ldots, n$:
if $a_{i}<a_{1}$:
rotate A to move a_{i} to the front; that is, set $A \leftarrow\left\langle a_{i}, a_{i+1}, \ldots, a_{n}, a_{1}, a_{2}, \ldots, a_{i-1}\right\rangle$.
- Output: $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$.

You are given a single integer n. Find the number of permutations on which the described algorithm solves the problem incorrectly.

Input

The only line contains a single integer $n(1 \leq n \leq 42)$.

Output

Print the number of permutations on which the described algorithm works incorrectly.

Examples

standard input	standard output
3	1
7	1023

Note

In the first example test case, for $n=3$, the only permutation resulting in an incorrect output is $\langle 3,2,1\rangle$. The algorithm returns $\langle 2,1,3\rangle$, while the correct answer is $\langle 1,3,2\rangle$.

