Problem J. Junk or Joy

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

You are given a positive integer k. Find the number of tuples of positive integers (n, p, m) such that $n^{2}-k \cdot p^{m}=1$ and p is a prime number, or report that an infinite number of such tuples exists.

Input

Each test contains multiple test cases. The first line contains the number of test cases $t(1 \leq t \leq 100)$. Description of the test cases follows.
The only line of each test case contains a single integer $k\left(1 \leq k \leq 10^{9}\right)$.

Output

For each test case, print the number of positive integer tuples (n, p, m) such that $n^{2}-k \cdot p^{m}=1$ and p is a prime, or -1 if there's an infinite number of them.

Example

	standard input
2	3
	standard output
22	

Note

In the first example test case, for $k=5$, the only possible tuples are $(4,3,1),(6,7,1)$, and $(9,2,4)$.
In the second example test case, for $k=22$, no possible tuples exist.

