Problem K. Kilk Not

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

You are given a string s consisting of zeros (0), ones (1), and question marks (?).
The number of question marks in s is exactly $a+b$.
Replace a question marks with zeros and b question marks with ones to obtain a binary string t. Let $f(t)$ be the length of the longest substring of t consisting of equal digits (e.g. 11111 or 0000).
Your task is to minimize $f(t)$.

Input

Each test contains multiple test cases. The first line contains the number of test cases $t\left(1 \leq t \leq 10^{5}\right)$. Description of the test cases follows.

The first line of each test case contains three integers n, a, and b ($1 \leq n \leq 250000 ; 0 \leq a ; 0 \leq b)$.
The second line contains a string s of length n consisting of characters 0,1 , and ?. The number of question marks in s is equal to $a+b$.
It is guaranteed that the sum of n over all test cases does not exceed 250000 .

Output

For each test case, print two lines.
In the first line, print a single integer $f(t)$, denoting the smallest possible length of the longest substring of t consisting of equal digits.
In the second line, print any string t achieving this value of $f(t)$ itself.

Example

standard input	standard output
4	1
$0 ? 01 ? ? 0$	0101010
1050	10
$? 000 ? ? 0 ? 0 ?$	0000000000
11000	3
11001110100	11001110100
1524	4
$? 1 ? 11 ? 1 ? ? 11100 ?$	110111101111001

