Problem F
 Factor-Free Tree
 Time limit: 6 seconds

A factor-free tree is a rooted binary tree where every node in the tree contains a positive integer value that is coprime with all of the values of its ancestors. Two positive integers are coprime if their greatest common divisor equals 1.
The inorder sequence of a rooted binary tree can be generated recursively by traversing first the left subtree, then the root, then the right subtree. See Figure F. 1 below for the inorder sequence of one factor-free tree.

Figure F.1: Illustration of Sample 1. The tree is factor-free; for example, the value of the node marked " 5 " is coprime with all of the values of its ancestors, marked " 9 ", " 8 ", and " 7 ".

Given a sequence $a_{1}, a_{2}, \ldots, a_{n}$, decide if it is the inorder sequence of some factor-free tree and if so construct such a tree.

Input

The input consists of:

- One line with one integer $n\left(1 \leq n \leq 10^{6}\right)$, the length of the sequence.
- One line with n integers $a_{1}, \ldots, a_{n}\left(1 \leq a_{i} \leq 10^{7}\right.$ for each $\left.i\right)$, the elements of the sequence.

Output

If there exists a factor-free tree whose inorder sequence is the given sequence, output n values. For each value in the sequence, give the 1 -based index of its parent, or 0 if it is the root. If there are multiple valid answers, print any one of them.
If no such tree exists, output "impossible" instead.

Sample Input 1

Sample Output 1

6													
2	7	15	8	9	5	$	$	2	0	4	2	4	5
:---	:---	:---	:---	:---	:---								

Sample Input 2
$\begin{array}{llllll}6 & & & & & \\ 2 & 7 & 15 & 8 & 9 & 6\end{array}$

Sample Output 2
impossible

