Bubble Sort 2

Bubble sort is an algorithm to sort a sequence. Let's say we are going to sort a sequence $A_{0}, A_{1}, \ldots, A_{N-1}$ of length N in non-decreasing order. Bubble sort swaps two adjacent numbers when they are not in the correct order. Swaps are done by repeatedly passing through the sequence. Precisely speaking, in a pass, we swap A_{i} and A_{i+1} if $A_{i}>A_{i+1}$, for $i=0,1, \ldots, N-2$ in this order. It is known that any sequence can be sorted in non-decreasing order by some passes. For a sequence A, we define the number of passes by bubble sort as the number of passes needed to sort A using the above algorithm.

JOI-kun has a sequence A of length N. He is going to process Q queries of modifying values of A. To be specific, in the $(j+1)$-th query $(0 \leq j \leq Q-1)$, the value of $A_{X_{j}}$ is changed into V_{j}.

JOI-kun wants to know the number of passes by bubble sort for the sequence after processing each query.

Example

Given a sequence $A=\{1,2,3,4\}$ of length $N=4$ and $Q=2$ queries: $X=\{0,2\}, V=\{3,1\}$.

1. For the first query, the value of A_{0} is changed into 3 . We obtain $A=\{3,2,3,4\}$.
2. For the second query, the value of A_{2} is changed into 1 . We obtain $A=\{3,2,1,4\}$.

Bubble sort for $A=\{3,2,3,4\}$:

- A is not sorted, so the first pass starts. Since $A_{0}>A_{1}$, we swap them to get $A=\{2,3,3,4\}$. Since $A_{1} \leq A_{2}$, we don't swap them. Since $A_{2} \leq A_{3}$, we don't swap them.
- Now A is sorted, so the bubble sort ends.

Hence, the number of passes by bubble sort is 1 for $A=\{3,2,3,4\}$.
Bubble sort for $A=\{3,2,1,4\}$:

- A is not sorted, so the first pass starts. Since $A_{0}>A_{1}$, we swap them to get $A=\{2,3,1,4\}$. Since $A_{1}>A_{2}$, we swap them to get $A=\{2,1,3,4\}$. Since $A_{2} \leq A_{3}$, we don't swap them.
- A is not sorted yet, so the second pass starts. Since $A_{0}>A_{1}$, we swap them to get $A=\{1,2,3,4\}$. Since $A_{1} \leq A_{2}$, we don't swap them. Since $A_{2} \leq A_{3}$, we don't swap them.
- Now A is sorted, so the bubble sort ends.

Hence, then number of passes by bubble sort is 2 for $A=\{3,2,1,4\}$.

Subtasks

There are 4 subtasks. The score and the constraints for each subtask are as follows:

Subtask	Score	N	Q	A, V
1	17	$1 \leq N \leq 2000$	$1 \leq Q \leq 2000$	$1 \leq A_{i}, V_{j} \leq 1000000000$
2	21	$1 \leq N \leq 8000$	$1 \leq Q \leq 8000$	$1 \leq A_{i}, V_{j} \leq 1000000000$
3	22	$1 \leq N \leq 50000$	$1 \leq Q \leq 50000$	$1 \leq A_{i}, V_{j} \leq 100$
4	40	$1 \leq N \leq 500000$	$1 \leq Q \leq 500000$	$1 \leq A_{i}, V_{j} \leq 1000000000$

Implementation details

You should implement the following function countScans to answer Q queries.

- countScans(A, X, V)
- A: array of integers of length N representing the initial values of the sequence.
- X, V : arrays of integers of length Q representing queries.
- This function should return an array S of integers of length Q. For each $0 \leq j \leq Q-1, S_{j}$ should be the number of passes by bubble sort for the sequence right after processing $(j+1)$-th query.

Sample grader

The sample grader reads the input in the following format:

- line 1: $N Q$
- line 2: $A_{0} A_{1} \ldots A_{N-1}$
- line $3+j(0 \leq j \leq Q-1)$: $X_{j} V_{j}$

The sample grader prints the return value of countScans in the following format:

- line $1+j(0 \leq j \leq Q-1): S_{j}$

