H: Pseudo-Random Number Generator

Donald loves nature. Being a programmer, Donald writes programs to simulate the growth of trees or to build realistic 3D landscapes. For this purpose, Donald needs a good pseudo-random number generator. He devises the following method to produce an infinite sequence of 40-bit unsigned integers (the lines in green are comments).

$$
\begin{array}{rll}
M & :=1 \ll 40 & / /=2^{40}=1099511627776 \\
S(0) & :=0 \times 600 \text { DCAFE } & / /=1611516670 \\
S(n+1) & :=(S(n)+(S(n) \gg 20)+12345) \div M &
\end{array}
$$

On the last line, $x \gg 20$ denotes the quotient of the Euclidean division of x by 2^{20} and $x \% M$ denotes the remainder of the Euclidean division of x by M.

As a very first test to decide if this is indeed a good pseudo-random number generator, Donald wishes to count the number of even values produced by this sequence, in order to check whether this is close enough to 50%. Your help will be welcome.

Input

The input consists of a single line, containing an integer N.

Limits

The input satisfies $0 \leqslant N<2^{63}$.

Output

The output should contain a single line with a single integer corresponding to the number of even values in the sequence $S(0), S(1), \ldots, S(N-1)$.

Sample Input 1

3

Sample Output 1

Sample Input 2
500000000

Sample Output 2

