K: Bird Watching

Time limit: 3 seconds

CC BY-SA 3.0 by Dick Daniels

Kiara studies an odd species of birds which travel in a very peculiar way. Their movements are best explained using the language of graphs: there exists a directed graph \mathcal{G} where the nodes are trees, and a bird can only fly from a tree T_a to T_b when (T_a, T_b) is an edge of \mathcal{G} .

Kiara does not know the real graph \mathcal{G} governing the flight of these birds but, in her previous field study, Kiara has collected data from the journey of many birds. Using this, she has devised a graph \mathcal{P} explaining how they move. Kiara has spent so much time watching them that she is confident that if a bird can fly directly from *a* to *b*, then she has witnessed at least one such occurrence. However, it is possible that a bird flew from *a* to *b* to *c* but she only witnessed the stops *a* and *c* and then added (a, c) to \mathcal{P} . It is also possible that a bird flew from *a* to *b* to *c* contains all the edges of \mathcal{G} and that \mathcal{P} might contain some other edges (a, b) for which there is a path from *a* to *b* in \mathcal{G} (note that \mathcal{P} might not contain all such edges).

For her next field study, Kiara has decided to install her base next to a given tree *T*. To be warned of the arrival of birds on *T*, she would also like to install detectors on the trees where the birds can come from (i.e. the trees *T*' such that there is an edge (T', T) in \mathcal{G}). As detectors are not cheap, she only wants to install detectors on the trees *T*' for which she is sure that (T', T) belongs to \mathcal{G} .

Kiara is sure that an edge (a, b) belongs to \mathcal{G} when (a, b) is an edge of \mathcal{P} and all the paths in \mathcal{P} starting from *a* and ending in *b* use the edge (a, b). Kiara asks you to compute the set $\mathcal{S}(T)$ of trees T' for which she is sure that (T', T) is an edge of \mathcal{G} .

Input

The input describes the graph \mathcal{P} . The first line contains three space-separated integers *N*, *M*, and *T*: *N* is the number of nodes of \mathcal{P} , *M* is the number of edges of \mathcal{P} and *T* is the node corresponding to the tree on which Kiara will install her base.

The next *M* lines describe the edges of the graph \mathcal{P} . Each contains two space-separated integers *a* and *b* ($0 \le a, b < N$ and $a \neq b$) stating that $(a, b) \in \mathcal{P}$. It is guaranteed that the same pair (a, b) will not appear twice.

Limits

- $1 \le N, M \le 100\,000;$
- $0 \leq T < N$.

Output

Your output should describe the set S(T). The first line should contain an integer *L*, which is the number of nodes in S(T), followed by *L* lines, each containing a different element of S(T). The elements of S(T) should be printed in increasing order, with one element per line.

Sample Input 1

3	3	2
0	1	
0	2	
1	2	

Sample Output 1

| 1 | 1

Sample Explanation 1

The graph corresponding to this example is depicted on the right. The node 1 belongs to S(2) because the (only) path from 1 to 2 uses (1,2). The node 0 does not belong to S(2) because the path $0 \rightarrow 1 \rightarrow 2$ does not use the edge (0,2).

Sample Input 2

6 8 2 0 1 - 0 2 - 1 2 - 2 0 - 2 3 - 3 4 - 4 2 - 2 5 -	_		
0 2 1 2 2 0 2 3 3 4 4 2		68	
1 2 2 0 2 3 3 4 4 2		0 1	
2 0 2 3 3 4 4 2		0 2	
2 3 3 4 4 2		1 2	
3 4 4 2		2 0	
4 2		2 3	
		3 4	
2 5		4 2	
		2 5	

Sample Output 2

2		
1		
4		

Sample Explanation 2

The graph corresponding to this example is depicted on the right. For the same reason as in Sample 1, the node 0 does not belong to S(2)while 1 does. The nodes 3 and 5 do not belong to S(2) because we do not have edges (3,2) or (5,2). Finally 4 belongs to S(2) because all paths from 4 to 2 use the edge (4,2).

