排列鞋子

Adnan 拥有巴库最大的鞋店。现在有一个装着 n 双鞋的箱子刚运到他的鞋店。每双鞋是大小相同的两只：一只左脚，一只右脚。Adnan 把这 $2 n$ 只鞋排成一行，该行总共有 $2 n$ 个位置，由左到右编号为从 0 到 $2 n-1$ 。

Adnan想把这些鞋子重新排成合法的排列。一个排列是合法的，当且仅当对于所有 $0 \leq i \leq n-1$ ），以下条件都成立：

- 在位置 $2 i$ 和 $2 i+1$ 上的鞋子大小相同。
- 在位置 $2 i$ 上的鞋子是一只左脚鞋。
- 在位置 $2 i+1$ 上的鞋子是一只右脚鞋。

为实现上述目标，Adnan 可以做一系列的对调。在每次对调中，他选择当前柤邻的两只鞋子进行对调 （也就是把它们拿起来，然后将每只鞋子放回到另一只鞋子原来的位置上）。两只鞋子是相邻的，如果其位置编号的差为 1 。

请找出 Adnan 最少需要做多少次对调，才能得到一个合法的排列。

实现细节

你需要实现下述函数：

int64 count＿swaps（int［］S）

－S ：一个包括 $2 n$ 个整数的数组。对于每个 $i(0 \leq i \leq 2 n-1), ~|S[i]|$ 是一个非零的值，等于最初在位置 i 上的鞋子的大小。这里 $|x|$ 表示 x 的绝对值，在 $x>0$ 时等于 x ，而在 $x<0$时等于 $-x$ 。如果 $S[i]<0$ ，位置 i 上的鞋子是一只左脚鞋，否则是一只右脚鞋。
－该函数应当返回为得到合法的排列而最少要做的（相邻鞋子）对调的次数。

例子

例1
考虑下述调用：

```
count_swaps([2, 1, -1, -2])
```

Adnan 可以通过 4 次对调而得到一个合法的排列。

例如，他可以先对调鞋子 1 和 -1 ，再对调 1 和 -2 ，再对调 -1 和 -2 ，最后对调 2 和 -2 。随后他就可以得到合法的排列 $[-2,2,-1,1]$ 。无法用少于 4 次对调就得到合法的排列。因此，该函数应当返回4。

例 2

在下面的例子中，所有鞋子的大小相同：

```
count_swaps([-2, 2, 2, -2, -2, 2])
```

Adnan可以对调在位置 2 和 3 上的鞋子来得到合法的排列 $[-2,2,-2,2,-2,2]$ ，因此该函数应当返回1。

限制条件

－ $1 \leq n \leq 100000$

- 对于所有 $i(0 \leq i \leq 2 n-1)$ ，有 $1 \leq|S[i]| \leq n$ 。
- 总有某个合法的排列可以经由一系列对调而得到。

子任务

1．（10 分）$n=1$
2．（20 分）$n \leq 8$
3．（20 分）所有鞋子大小都是相同的。
4．（15 分）所有在位置 $0, \ldots, n-1$ 上的鞋子都是左脚鞋，而所有在位置 $n, \ldots, 2 n-1$ 上的鞋都是右脚鞋。而且对于所有 $i(0 \leq i \leq n-1)$ ，在位置 i 和 $i+n$ 上的鞋子大小是相同的。
5．（20 分）$n \leq 1000$
6．（15分）没有任何附加限制。

评测程序示例

评测程序示例读取如下格式的输入：

- 第 1 行：n
- 第 2 行：$S[0] S[1] S[2] \ldots S[2 n-1]$

评测程序示例输出单独的一行，其中包含 count＿swaps 的返回值。

