NWERC 2016

Problem H Hamiltonian Hypercube

Hypercube graphs are fascinatingly regular, hence you have devoted a lot of time studying the mathematics related to them. The vertices of a hypercube graph of dimension n are all binary strings of length n, and two vertices are connected if they differ in a single position. There are many interesting relationships between hypercube graphs and error-correcting code.

One such relationship concerns the *n*-bit Gray Code, which is an ordering of the binary strings of length n, defined recursively as follows. The sequence of words in the *n*-bit code first consists of the words of the (n - 1)-bit code, each prepended by a 0, followed by the same words in reverse order, each prepended by a 1. The 1-bit Gray Code just consists of a 0 and a 1. For example the 3-bit Gray Code is the following sequence:

000,001,011,010,110,111,101,100

Now, the *n*-bit Gray Code forms a Hamiltonian path in the *n*-dimensional hypercube, i.e., a path that visits every vertex exactly once (see Figure H.1).

Figure H.1: The 3-dimensional hypercube and the Hamiltonian path corresponding to the 3-bit Gray Code.

You wonder how many vertices there are between the vertices 0^n (*n* zeros) and 1^n (*n* ones) on that path. Obviously it will be somewhere between $2^{n-1} - 1$ and $2^n - 2$, since in general 0^n is the first vertex, and 1^n is somewhere in the second half of the path. After finding an elegant answer to this question you ask yourself whether you can generalise the answer by writing a program that can determine the number of vertices between two arbitrary vertices of the hypercube, in the path corresponding to the Gray Code.

Input

The input consists of a single line, containing:

- one integer $n \ (1 \le n \le 60)$, the dimension of the hypercube
- two binary strings a and b, both of length n, where a appears before b in the n-bit Gray Code.

Output

Output the number of code words between a and b in the n-bit Gray Code.

Sample Input 1	Sample Output 1
3 001 111	3
Sample Input 2	Sample Output 2

	3 110 100	2
- 1		