
Problem C: Confined Catching
You are playing a board game against an AI on a square grid consisting of n× n cells. You have
two game pieces and the AI has one, and each piece is placed in one of the grid cells. Your goal
is to “catch” the AI’s piece, that is, one (or both) of your pieces has to lie in the same cell as the
AI’s piece after one of your turns. When this happens, you win and the game ends. You lose if
you have not won after 600 turns.

Each turn, you have up to five movement options per piece: You can move a piece up, down,
left, or right to an adjacent cell (if there is one) or let the piece remain in its current cell. The
AI has the same options for its piece in each of its turns. Of course, you can move your pieces
completely independently from one another and even have them occupy the same cell.

Your goal is simple: Win the game! You can safely assume that this is always possible.

Initial Input

Before it is your first turn, your program will receive:
• One line with an integer n (3 ≤ n ≤ 100), giving the size of the grid.
• One line with four integers x1, y1, x2, y2 (1 ≤ x1, y1, x2, y2 ≤ n), giving your pieces’

initial positions.
• One line with two integers x, y (1 ≤ x, y ≤ n), giving the AI’s piece’s initial position.

You can safely assume that your pieces do not lie in the same cell as the AI’s piece (but they
may lie in the same cell as each other).

Interaction Protocol

Your submission will be interacting with a special program called the grader. This means that
the output of your submission is sent to the grader and the output of the grader is sent to the
standard input of your submission. This interaction must follow a specific protocol:

Your submission and the grader alternate writing turns, with you going first. Your turns consist
of a single line with four integers x1, y1, x2, y2 to specify the locations of your pieces after your
turn (in the same order as in the initial input). Similarly, the grader will send lines with two
integers x, y to indicate the AI’s turn. You can safely assume that the grader will only send you
valid moves, and the AI will never choose to place its piece in a cell occupied by one or both of
your pieces. Your submission may take at most 600 turns.

After each of your turns you should flush the standard output to ensure that the request is sent to
the grader. For example, you can use fflush(stdout) in C++, System.out.flush()
in Java and sys.stdout.flush() in Python.

After you send the grader a valid turn catching the AI’s piece, the game ends. Your submission
should then terminate with exit code 0 as usual. For convenience, the grader will send a single
line containing 0 0 to signal the end of the game, which your submission may or may not read.

Your submission will be accepted if it follows the rules and protocol above and wins the game.
If it sends any invalid turn, it will be judged as “Wrong Answer”.

For your convenience, we have provided you with a testing tool that lets your solution interact
with a simple version of the AI opponent. It is included in the ZIP archive with sample data that
you can download from the DOMjudge problem overview page.

GCPC 2020 – Problem C: Confined Catching 5

https://domjudge.cs.fau.de/team/problems


Read Sample Interaction 1 Write

3
1 1 3 1
2 3

1 2 3 2

3 3

1 2 3 3

0 0

GCPC 2020 – Problem C: Confined Catching 6


