2021 Canadian Computing Olympiad Day 1, Problem 2

Weird Numeral System

Time Limit: 1.5 seconds

Problem Description

Alice enjoys thinking about base-K numeral systems (don't we all?). As you might know, in the standard base-K numeral system, an integer n can be represented as d_{m-1} d_{m-2} ... d_1 d_0 where:

- Each digit d_i is in the set $\{0, 1, \dots, K-1\}$, and
- $d_{m-1}K^{m-1} + d_{m-2}K^{m-2} + \dots + d_1K^1 + d_0K^0 = n$.

For example, in standard base-3, you would write 15 as 1 2 0, since $(1) \cdot 3^2 + (2) \cdot 3^1 + (0) \cdot 3^0 = 15$.

But standard base-K systems are too easy for Alice. Instead, she's thinking about **weird-base-K** systems.

A weird-base-K system is just like the standard base-K system, except that instead of using the digits $\{0, \ldots, K-1\}$, you use $\{a_1, a_2, \ldots, a_D\}$ for some value D. For example, in a weird-base-3 system with $a = \{-1, 0, 1\}$, you could write 15 as 1 -1 -1 0, since $(1) \cdot 3^3 + (-1) \cdot 3^2 + (-1) \cdot 3^1 + (0) \cdot 3^0 = 15$.

Alice is wondering how to write Q integers, n_1 through n_Q , in a weird-base-K system that uses the digits a_1 through a_D . Please help her out!

Input Specification

The first line contains four space-separated integers, K, Q, D, and M ($2 \le K \le 1\,000\,000$, $1 \le Q \le 5$, $1 \le D \le 5001$, $1 \le M \le 2500$).

The second line contains D distinct integers, a_1 through a_D ($-M \le a_i \le M$).

Finally, the *i*-th of the next Q lines contains n_i ($-10^{18} \le n_i \le 10^{18}$).

For 8 of the 25 available marks, $M = K - 1 \le 400$, $K = D \le 801$.

Output Specification

Output Q lines, the i-th of which is a weird-base-K representation of n_i . If multiple representations are possible, any will be accepted. The digits of the representation should be separated by spaces. Note that 0 must be represented by a non-empty set of digits.

If there is no possible representation, output IMPOSSIBLE.

Sample Input 1

3 3 3 1

-1 0 1

15

8

-5

Output for Sample Input 1

1 -1 -1 0

1 0 -1

-1 1 1

Explanation of Output for Sample Input 1

We have:

$$(1) \cdot 3^3 + (-1) \cdot 3^2 + (-1) \cdot 3^1 + (0) \cdot 3^0 = 15,$$

$$(1) \cdot 3^2 + (0) \cdot 3^1 + (-1) \cdot 3^0 = 8$$
, and

$$(-1) \cdot 3^2 + (1) \cdot 3^1 + (1) \cdot 3^0 = -5.$$

Sample Input 2

10 1 3 2

0 2 -2

17

Output for Sample Input 2

IMPOSSIBLE