2021 Canadian Computing Olympiad
 Day 2, Problem 1 Travelling Merchant

Time Limit: 1 second

Problem Description

A merchant would like to make a business of travelling between cities, moving goods from one city to another in exchange for a profit. There are N cities and M trading routes between them.

The i-th trading route lets the merchant travel from city a_{i} to city b_{i} (in only that direction). In order to take this route, the merchant must already have at least r_{i} units of money. After taking this route, the total amount of money the merchant has will increase by p_{i} units, with a guarantee that $p_{i} \geq 0$.

For each of the N cities, we would like to know the minimum amount of money required for a merchant to start in that city and be able to keep travelling forever.

Input Specification

The first line contains the two integers N and $M(2 \leq N, M \leq 200000)$.
The i-th of the next M lines contains the four integers a_{i}, b_{i}, r_{i}, and $p_{i}\left(1 \leq a_{i}, b_{i} \leq N\right.$, $\left.a_{i} \neq b_{i}, 0 \leq r_{i}, p_{i} \leq 10^{9}\right)$. Note that there may be any number of routes between a pair of cities.

For 4 of the 25 available marks, $N, M \leq 2000$.
For an additional 5 of the 25 available marks, $p_{i}=0$ for all i.

Output Specification

On a single line, output N space-separated integers, where the i-th is the answer if the merchant were to start at city i. This answer is either the minimum amount of money, or -1 if no amount of money can be sufficient.

Sample Input

55
3140
2130
1311
3231
4202

Output for Sample Input
2331 -1

Explanation of Output for Sample Input
Starting from city 2 with 3 units of money, the merchant can cycle between cities 2, 1, and 3.

