2020 Canadian Computing Olympiad
 Day 1, Problem 2
 Exercise Deadlines

Time Limit: 1 second

Problem Description

Bob has N programming exercises that he needs to complete before their deadlines. Exercise i only takes one time unit to complete, but has a deadline $d_{i}\left(1 \leq d_{i} \leq N\right)$ time units from now.

Bob will solve the exercises in an order described by a sequence $a_{1}, a_{2}, \ldots, a_{N}$, such that a_{1} is the first exercise he solves, a_{2} is the second exercise he solves, and so on. Bob's original plan is described by the sequence $1,2, \ldots, N$. With one swap operation, Bob can exchange two adjacent numbers in this sequence. What is the minimum number of swaps required to change this sequence into one that completes all exercises on time?

Input Specification

The first line consists of a single integer $N(1 \leq N \leq 200000)$. The next line contains N spaceseparated integers $d_{1}, d_{2}, \ldots, d_{N}\left(1 \leq d_{i} \leq N\right)$.

For 17 of the 25 marks available, $N \leq 5000$.

Output Specification

Output a single integer, the minimum number of swaps required for Bob to solve all exercises on time, or -1 if this is impossible.

```
Sample Input 1
4
4 3 2
```


Output for Sample Input 1

3

Explanation of Output for Sample Input 1

One valid sequence is $(1,4,3,2)$, which can be obtained from $(1,2,3,4)$ by three swaps.

Sample Input 2

3
113

Output for Sample Input 2

-1

Explanation of Output for Sample Input 2

There are two exercises that are due at time 1, but only one exercise can be solved by this time.

