Coin Collecting

Mr. JOI has a huge desk in his collection room, and there are a number of rare coins on it. To clean up the desk, he is going to rearrange the coins.

The desk can be regarded as a $2000000001 \times 2000000001$ grid. The columns are numbered from -1000000000 through 1000000000 from left to right, and the rows are numbered from -1000000000 through 1000000000 from bottom to top. The cell with the column number x and the row number y is denoted by (x, y).

There are $2 N$ coins. Currently, the i-th coin $(1 \leq i \leq 2 N)$ is placed at the cell $\left(X_{i}, Y_{i}\right)$. Mr. JOI's goal is to place a coin on each cell (x, y) with $1 \leq x \leq N$ and $1 \leq y \leq 2$. In order not to hurt the coins, the only operation he can perform is to choose a coin and move it to one of the neighboring cells (a cell neighbors another if and only if they share an edge). It is allowed that multiple coins are placed on a cell at some point. He wants to achieve the goal with as few operations as possible

Write a program which, given the number of coins and the cells where the coins are currently placed, calculates the minimum number of operations needed to achieve the goal.

Input

Read the following data from the standard input.

$$
\begin{aligned}
& N \\
& X_{1} Y_{1} \\
& \vdots \\
& X_{2 N} Y_{2 N}
\end{aligned}
$$

Output

Write one line to the standard output. The output should contain the minimum number of operations needed to achieve the goal.

Constraints

- $1 \leq N \leq 100000$.
- $-1000000000 \leq X_{i} \leq 1000000000(1 \leq i \leq 2 N)$.
- $-1000000000 \leq Y_{i} \leq 1000000000(1 \leq i \leq 2 N)$.

Subtasks

1. (8 points) $N \leq 10$.
2. (29 points) $N \leq 1000$.
3. (63 points) No additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1
3	15
0	0
0	4
4	0
2	1
2	5
-1	1

In this sample input, 6 coins are placed as the figure below. The goal is to collect the coins inside the thick lines.

For example, Mr. JOI can achieve the goal with 15 operations by the following moves:

- The 1 st coin: $(0,0) \rightarrow(1,0) \rightarrow(1,1) \rightarrow(1,2)$
- The 2nd coin: $(0,4) \rightarrow(1,4) \rightarrow(1,3) \rightarrow(2,3) \rightarrow(3,3) \rightarrow(3,2)$
- The 3rd coin: $(4,0) \rightarrow(4,1) \rightarrow(3,1)$
- The 5th coin: $(2,5) \rightarrow(2,4) \rightarrow(2,3) \rightarrow(2,2)$
- The 6th coin: $(-1,1) \rightarrow(0,1) \rightarrow(1,1)$

As he cannot achieve the goal with 14 or less operations, you should output 15 .

The 18th Japanese Olympiad in Informatics (JOI 2018/2019)
Final Round
February 10, 2018 (Tsukuba City, Ibaraki Prefecture)

Sample Input 2	Sample Output 2
4	
2	1
2	1
2	1
3	1
3	1
3	1
3	1
3	1

Multiple coins may be placed on a cell.

Sample Input 3	Sample Output 3
5	8000000029
10000000001000000000	
-10000000001000000000	
$-1000000000-1000000000$	
$1000000000-1000000000$	
$-1-5$	
-22	
28	
47	
-25	
73	

