A. Autobiography

Bobo has an undirected graph with n vertices and m edges. The vertices are numbered by $1, \ldots, n$, and the i-th edge is between the a_{i}-th and the b_{i}-th vertex. Plus, the i-th vertex is associated with a character c_{i}.

Find the number of ways to choose four distinct vertices (u, v, w, x) such that

- u and v, v and w, w and x are connected by an edge,
- $c_{u}=\mathrm{b}, c_{v}=\mathrm{o}, c_{w}=\mathrm{b}, c_{x}=\mathrm{o}$.

Input

The input consists of several test cases terminated by end-of-file. For each test case,
The first line contains two integers n and m.
The second line contains n characters $c_{1} \ldots c_{n}$.
For the following m lines, the i-th line contains two integers a_{i} and b_{i}.

- $4 \leq n \leq 2 \times 10^{5}$
- $0 \leq m \leq 2 \times 10^{5}$
- $c_{i} \in\{\mathrm{~b}, \mathrm{o}\}$ for each $1 \leq i \leq n$
- $1 \leq a_{i}, b_{i} \leq n$ for each $1 \leq i \leq m$
- $a_{i} \neq b_{i}$ for each $1 \leq i \leq m$
- $\left\{a_{i}, b_{i}\right\} \neq\left\{a_{j}, b_{j}\right\}$ for each $1 \leq i<j \leq m$
- In each input, the sum of n does not exceed 2×10^{5}. The sum of m does not exceed 2×10^{5}.

Output

For each test case, output an integer which denotes the number of ways.

Sample Input

```
54
bbobo
1 3
2 3
34
4
46
bobo
12
1 3
14
2 3
24
34
40
bobo
```


Sample Output

2

4
0

Note

For the first test case, there are 2 quadrangles $(1,3,4,5),(2,3,4,5)$.
For the second test case, there are 4 quadrangles $(1,2,3,4),(1,4,3,2),(3,2,1,4),(3,4,1,2)$.
For the third test case, there are no valid quadrangles.

