B. Algebra

Given three integers n, m, k, find the number of pairs (a, b) where

- $|a|,|b| \leq m$,
- $a, b \in \mathbb{Z}$, i.e., a and b are integers,
- $|S|=k$ where S be the set of rational roots of the equation $x^{n}+a \cdot x+b=0$, and $|S|$ is the size of S. In particular, there exists exactly k distinct rational numbers x which solve the last equation.

Note: x is a rational number if and only if there exists two integers p and $q(q \neq 0)$ where $x=\frac{p}{q}$.

Input

The input consists of several test cases terminated by end-of-file. For each test case,
The first line contains three integers n, m and k.

- $1 \leq n, m, k \leq 5 \times 10^{5}$
- In each input, the sum of m does not exceed 5×10^{5}.

Output

For each test case, output an integer which denotes the number of pairs.

Sample Input

211
222
333

Sample Output

1
7
1

Note

For the first test case, only the equation $x^{2}=0$ has one rational root.
For the second test case, each of the following 7 equations has two distinct rational roots.

- $x^{2}-2 x=0$
- $x^{2}-x=0$
- $x^{2}-x-2=0$
- $x^{2}-1=0$
- $x^{2}+x=0$
- $x^{2}+2 x=0$
- $x^{2}+x-2=0$

