
D. Data Structure
In compute science, a stack s is a data structure maintaining a list of elements with two operations:

• s.push(e) appends an element e to the right end of the list,
• s.pop() removes the rightmost element in the list and returns the removed element.

For convenience, Bobo denotes the number of elements in the stack s by size(s), and the rightmost element
by right(s).

Bobo has m stacks s1, . . . , sm. Initially, the stack si contains ki elements ai,1, . . . , ai,ki where ai,j ∈ {1, . . . , n}.
Furthermore, for each e ∈ {1, . . . , n}, the element e occurs in the m stacks exactly twice. Thus, k1 +· · ·+km =
2n.

A sorting plan of length l consists of l pairs (f1, t1), . . . , (fl, tl). To execute a sorting plan, for each i ∈ {1, . . . , l}
in the increasing order, Bobo performs sti .push(sfi .pop()).

A sorting plan is valid if the length does not exceed ⌊ 3n
2 ⌋, and for each i ∈ {1, . . . , l}, 1 ≤ fi, ti ≤ m, fi ̸= ti.

Before the i-th operation,

• size(sfi) > 0,
• size(sti) < 2,
• either size(sti) = 0 or right(sfi) = right(sti).

Also, after the execution of a valid sorting plan, each of the m stacks either is empty or contains the two copies
of the same element.

Find a valid sorting plan, given the initial configuration of the m stacks.

Input
The input consists of several test cases terminated by end-of-file. For each test case,

The first line contains two integers n and m.

For the next m lines, the i-th line contains an integer ki, and ki integers ai,1, . . . , ai,ki
.

• 1 ≤ n ≤ m ≤ 2 × 105

• 0 ≤ ki ≤ 2 for each 1 ≤ i ≤ m
• 1 ≤ ai,j ≤ n for each 1 ≤ i ≤ m, 1 ≤ j ≤ ki

• For each 1 ≤ e ≤ n, there exists exactly two (i, j) where 1 ≤ j ≤ ki and ai,j = e.
• In each input, the sum of m does not exceed 2 × 105.

Output
For each test case, if there exists a valid sorting plan, output an integer l, which denotes the length of the
sorting plan. Followed by l lines, the i-th line contains two integers fi and ti. Otherwise, output -1.

If there are multiple valid sorting plans, any of them is considered correct.

Sample Input
2 3
2 1 2
2 1 2
0
1 1
2 1 1
3 4
2 1 3
2 2 3
1 1
1 2

4

Sample Output
3
1 3
2 3
2 1
0
-1

Note
For the first test cases,

• Initially, s1 = [1, 2], s2 = [1, 2], s3 = [].
• After s3.push(s1.pop()). s1 = [1], s2 = [1, 2], s3 = [2].
• After s3.push(s2.pop()), s1 = [1], s2 = [1], s3 = [2, 2].
• After s1.push(s2.pop()), s1 = [1, 1], s2 = [], s3 = [2, 2].

For the second test case, the initial configuration is already sorted.

5

