Problem E. Game Theory

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: $\quad 512$ mebibytes
For a string $s_{1} \ldots s_{n}$ of n bits (i.e., zeros and ones), Bobo computes the f-value of $s_{1} \ldots s_{n}$ by playing the following game.

- If all the bits are zero, the game ends.
- If there are k ones in the bit string, Bobo flips the k-th bit, i.e., s_{k}.
- The f-value of the bit string is the number of flips Bobo has performed before the game ends.

Formally,

- If $s_{1}=\cdots=s_{n}=0, f\left(s_{1} \ldots s_{n}\right)=0$.
- Otherwise, assuming that $k=s_{1}+\cdots+s_{n}, f\left(s_{1} \ldots s_{n}\right)=f\left(s_{1} \ldots s_{k-1} \overline{s_{k}} s_{k+1} \ldots s_{n}\right)+1$ where \bar{c} denotes the flip of the bit c such as $\overline{0}=1$ and $\overline{1}=0$.

Now, Bobo has a bit string $s_{1} \ldots s_{n}$ subjecting to q changes, where the i-th change is to flip all the bits among $s_{l_{i}} \ldots s_{r_{i}}$ for given l_{i}, r_{i}. Find the f-value modulo 998244353 of the bit string after each change.

Input

The input consists of several test cases terminated by end-of-file. For each test case,
The first line contains two integers n and q.
The second line contains n bits $s_{1} \ldots s_{n}$.
For the following q lines, the i-th line contains two integers l_{i} and r_{i}.

- $1 \leq n \leq 2 \times 10^{5}$
- $1 \leq q \leq 2 \times 10^{5}$
- $s_{i} \in\{0,1\}$ for each $1 \leq i \leq n$
- $1 \leq l_{i} \leq r_{i} \leq n$ for each $1 \leq i \leq q$
- In each input, the sum of n does not exceed 2×10^{5}. The sum of q does not exceed 2×10^{5}.

Output

For each change, output an integer which denotes the f-value modulo 998244353.

Examples

	standard input		standard output
3	2	1	
010	3		
1	2	5	
2	3		
5	1		
00000	5		
1			

Note

For the first test case, the string becomes " 100 " after the first change. $f(100)=f(000)+1=1$. And it becomes " 111 " after the second change. $f(111)=f(110)+1=f(100)+2=f(000)+3=3$.

