F. Graph Theory

Bobo has an undirected graph G with n vertices labeled by $1, \ldots, n$ and n edges. For each $1 \leq i \leq n$, there is an edge between the vertex i and the vertex $(i \bmod n)+1$. He also has a list of m pairs $\left(a_{1}, b_{1}\right), \ldots,\left(a_{m}, b_{m}\right)$.

Now, Bobo is going to choose an i and remove the edge between the vertex i and the vertex $(i \bmod n)+1$. Let $\delta_{i}(u, v)$ be the number of edges on the shortest path between the u-th and the v-th vertex after the removal. Choose an i to minimize the maximum among $\delta_{i}\left(a_{1}, b_{1}\right), \ldots, \delta_{i}\left(a_{m}, b_{m}\right)$.
Formally, find the value of

$$
\min _{1 \leq i \leq n}\left\{\max _{1 \leq j \leq m} \delta_{i}\left(a_{j}, b_{j}\right)\right\}
$$

Input

The input consists of several test cases terminated by end-of-file. For each test case,
The first line contains two integers n and m.
For the following m lines, the i-th line contains two integers a_{i} and b_{i}.

- $2 \leq n \leq 2 \times 10^{5}$
- $1 \leq m \leq 2 \times 10^{5}$
- $1 \leq a_{i}, b_{i} \leq n$ for each $1 \leq i \leq m$
- In each input, the sum of n does not exeed 2×10^{5}. The sum of m does not exceed 2×10^{5}.

Output

For each test case, output an integer which denotes the minimum value.

Sample Input

Sample Output

1

0
2

Note

For the first case,

i	$\delta_{i}(1,2)$	$\delta_{i}(2,3)$
1	2	1
2	1	2
3	1	1

Choosing $i=3$ yields the minimum value 1 .

