G. Hamilton

Bobo has an $n \times n$ symmetric matrix C consisting of zeros and ones. For a **permutation** p_1, \ldots, p_n of $1, \ldots, n$, let

$$c_i = \begin{cases} C_{p_i, p_{i+1}} & \text{for } 1 \le i < n \\ C_{p_n, p_1} & \text{for } i = n \end{cases}$$

The permutation p is almost monochromatic if and only if the number of indices $i \ (1 \le i < n)$ where $c_i \ne c_{i+1}$ is at most one.

Find an *almost monochromatic* permutation p_1, \ldots, p_n for the given matrix C.

Input

The input consists of several test cases terminated by end-of-file. For each test case,

The first line contains an integer n.

For the following n lines, the *i*-th line contains n integers $C_{i,1}, \ldots, C_{i,n}$.

- $3 \le n \le 2000$
- $C_{i,j} \in \{0,1\}$ for each $1 \le i, j \le n$
- $C_{i,j} = C_{j,i}$ for each $1 \le i, j \le n$
- $C_{i,i} = 0$ for each $1 \le i \le n$
- In each input, the sum of n does not exceed 2000.

Output

For each test case, if there exists an *almost monochromatic* permutation, output n integers p_1, \ldots, p_n which denote the permutation. Otherwise, output -1.

If there are multiple *almost monochromatic* permutations, any of them is considered correct.

Sample Input

Sample Output

3 1 2 2 4 3 1

Note

For the first test case, $c_1 = C_{3,1} = 1$, $c_2 = C_{1,2} = 0$, $c_3 = C_{2,3} = 0$. Only when i = 1, $c_i \neq c_{i+1}$. Therefore, the permutation 3, 1, 2 is an almost monochromatic permutation.