G. Hamilton

Bobo has an $n \times n$ symmetric matrix C consisting of zeros and ones. For a permutation p_{1}, \ldots, p_{n} of $1, \ldots, n$, let

$$
c_{i}=\left\{\begin{array}{ll}
C_{p_{i}, p_{i+1}} & \text { for } 1 \leq i<n \\
C_{p_{n}, p_{1}} & \text { for } i=n
\end{array} .\right.
$$

The permutation p is almost monochromatic if and only if the number of indices $i(1 \leq i<n)$ where $c_{i} \neq c_{i+1}$ is at most one.
Find an almost monochromatic permutation p_{1}, \ldots, p_{n} for the given matrix C.

Input

The input consists of several test cases terminated by end-of-file. For each test case,
The first line contains an integer n.
For the following n lines, the i-th line contains n integers $C_{i, 1}, \ldots, C_{i, n}$.

- $3 \leq n \leq 2000$
- $C_{i, j} \in\{0,1\}$ for each $1 \leq i, j \leq n$
- $C_{i, j}=C_{j, i}$ for each $1 \leq i, j \leq n$
- $C_{i, i}=0$ for each $1 \leq i \leq n$
- In each input, the sum of n does not exceed 2000 .

Output

For each test case, if there exists an almost monochromatic permutation, output n integers p_{1}, \ldots, p_{n} which denote the permutation. Otherwise, output -1.
If there are multiple almost monochromatic permutations, any of them is considered correct.

Sample Input

3
001
000
100
4
0000
0000
0000
0000

Sample Output

312
2431

Note

For the first test case, $c_{1}=C_{3,1}=1, c_{2}=C_{1,2}=0, c_{3}=C_{2,3}=0$. Only when $i=1, c_{i} \neq c_{i+1}$. Therefore, the permutation $3,1,2$ is an almost monochromatic permutation.

