I. Number Theory

Let $o_{i}=\underbrace{1 \ldots 1}_{i \text { times }}$ be the number which consists of i ones in its decimal representation.
Bobo has an integer n. Find a sequence of possibly negative integers $\left(x_{1}, x_{2}, \ldots,\right)$ where

- $\sum_{i=1}^{\infty} o_{i} \cdot x_{i}=n$,
- $\sum_{i=1}^{\infty} i \cdot\left|x_{i}\right|$ is minimized.

Input

The input consists of several test cases terminated by end-of-file. For each test case,
The first line contains an integer n.

- $1 \leq n<10^{5000}$
- In each input, the sum of the number of decimal digits of n does not exceed 50000 .

Output

For each test case, output an integer which denotes the minimum value of $\sum_{i=1}^{\infty} i \cdot\left|x_{i}\right|$.

Sample Input

12
100
998244353

Sample Output

3
5
76

Note

For the first test case, $x_{1}=x_{2}=1, x_{3}=x_{4}=\cdots=0$. The minimum value is $1 \times 1+2 \times 1=3$.
For the second test case, $x_{1}=0, x_{2}=-1, x_{3}=1, x_{4}=x_{5}=\cdots=0$. The minimum value is $2 \times 1+3 \times 1=5$.

