J. Permutation Pattern

A sequence a_1, \ldots, a_m of m distinct numbers is called *without 231* if there is **no** triples (i, j, k) where $1 \le i < j < k \le m$ and $a_k < a_i < a_j$.

Bobo has a permutation p_1, \ldots, p_n of $1, \ldots, n$, and he can remove some (possibly none, but not all) elements from the permutation. Find the number of sequences without 231 among $(2^n - 1)$ resulting permutations.

Input

The input consists of several test cases terminated by end-of-file. For each test case,

The first line contains an integer n.

The second line contains n integers p_1, \ldots, p_n .

- $1 \le n \le 50$
- $1 \le p_i \le n$ for each $1 \le i \le n$
- In each input, the sum of n does not exceed 500.

Output

For each test case, output an integer which denotes the number of sequences.

Sample Input

Sample Output

3 7

11