J. Permutation Pattern

A sequence a_{1}, \ldots, a_{m} of m distinct numbers is called without 231 if there is no triples (i, j, k) where $1 \leq i<$ $j<k \leq m$ and $a_{k}<a_{i}<a_{j}$.

Bobo has a permutation p_{1}, \ldots, p_{n} of $1, \ldots, n$, and he can remove some (possibly none, but not all) elements from the permutation. Find the number of sequences without 231 among $\left(2^{n}-1\right)$ resulting permutations.

Input

The input consists of several test cases terminated by end-of-file. For each test case,
The first line contains an integer n.
The second line contains n integers p_{1}, \ldots, p_{n}.

- $1 \leq n \leq 50$
- $1 \leq p_{i} \leq n$ for each $1 \leq i \leq n$
- In each input, the sum of n does not exceed 500 .

Output

For each test case, output an integer which denotes the number of sequences.

Sample Input

2
21
3
123
4
2341

Sample Output

3
7
11

