Problem B. Boris and Berta

Time limit: 2 seconds
Memory limit: 512 megabytes

Boris is making a quest for his sister Berta. One of the tasks is to find a point on the map that is n meters to the north from their house. But it's too easy if n is specified directly. Boris decided to use miles and cables to specify the distance.
He found out that there are a lot of different miles: from a 500 -meter Chinese mile (called $l i$) up to a 11299 -meter Norwegian mile (called mil). And a cable length can be anywhere from 169 to 220 meters.
Boris decided to use an m-meter mile and a c-meter cable. Now he wants to represent the n-meter distance as " M miles and C cables" with non-negative integers M and C as precisely as possible - that is, he wants to minimize $|M \cdot m+C \cdot c-n|$. Help him!

Input

Three lines contain an integer each: n - the distance to represent, m - the chosen length of a mile, and c - the chosen length of a cable ($1 \leq n \leq 10^{9} ; 500 \leq m \leq 11299 ; 169 \leq c \leq 220$). All values are given in meters.

Output

Print two non-negative integers M and C - the best approximation for the distance of n meters using the chosen mile and cable lengths. If there are multiple best approximations, print any of them.

Examples

standard input	standard output	
1234	07	
500	769	
1700	16	
500		

Note

There are two correct answers to the second example test: " 16 " and " 31 ".

