Problem D. Day Streak

Time limit: $\quad 4$ seconds
Memory limit: $\quad 512$ megabytes

Recently Deltaforces, a famous competitive programming website, added a lot of new visual information to user profiles. In particular, there is a maximum day streak - the maximum number of days in a row with at least one problem solved. You decided that the maximum day streak in your profile does not accurately represent your training efforts. So you came up with a thought - what if you could change the time zone in your profile to increase the maximum day streak?
Let's formalize this setting as follows. Suppose you have solved n problems, and the i-th problem was solved at time a_{i}. There are m time zones, numbered from 0 to $m-1$. The default time zone is 0 . If you decide to change your time zone to t, all solutions' timestamps increase by t : the problem solved at time a_{i} is now considered to be solved at time $a_{i}+t$, for all i simultaneously.
The problem solved at time x is considered to be solved on day number $\left\lfloor\frac{x}{m}\right\rfloor$. Here $\lfloor v\rfloor$ means v rounded down to the greatest integer less than or equal to v.

To display the maximum day streak, Deltaforces finds such l and r that you have solved at least one problem on each of days $l, l+1, \ldots, r$, and $r-l+1$ is as large as possible. Then your maximum day streak is shown as $r-l+1$.
Find the maximum day streak you can achieve by selecting a time zone.

Input

Each test contains multiple test cases. The first line contains the number of test cases $t\left(1 \leq t \leq 2 \cdot 10^{5}\right)$. Description of the test cases follows.
The first line of each test case contains two integers n and m - the number of solved problems and the number of time zones $\left(1 \leq n \leq 2 \cdot 10^{5} ; 1 \leq m \leq 10^{9}\right)$. The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}-$ distinct timestamps of your solutions, in chronological order ($0 \leq a_{1}<a_{2}<\cdots<a_{n} \leq 10^{9}$).
It is guaranteed that the sum of n over all test cases does not exceed $2 \cdot 10^{5}$.

Output

For each test case, print two integers s and t - the maximum day streak and any time zone that achieves it $(1 \leq s \leq n ; 0 \leq t<m)$.

Example

standard input	standard output
5	32
410	25
03824	50
210	212
3235	415
101	
$\begin{array}{llllllllll}0 & 1 & 3 & 4 & 6 & 70 & 11 & 12\end{array}$	
1024	
$\begin{array}{llllllllll}0 & 1 & 3 & 5 & 7 & 10 & 11\end{array}$	
824	
2671101147181201244268	

Note

In the first example test case, when you select time zone 2, the timestamps of your solutions change to $2,5,10$, and 26 . It means the problems are now considered to be solved on days $0,0,1$, and 2 ; that is
a 3 -day streak. Time zones 3,4 , and 5 yield the same answer.
In the second example test case, timestamps of your solutions are 37 and 40 in time zone 5 , which corresponds to days 3 and 4. Time zones 6 and 7 also work.
In the third example test case, only one time zone exists, and your maximum day streak is 5 .
In the fourth example test case, you have solved many problems but in a short period of time, and you can't obtain more than a 2-day streak.

