icpc.foundation

The 2021 ICPC Southeast USA Regional Contest

Problem B

Circle Bounce

 Time Limit: 1 Second(s)You are standing by the wall in a large, perfectly circular arena and you throw a tennis ball hard against some other part of the arena. After a given number of bounces, where does the tennis ball next strike the wall?

Map the arena as a unit circle centered at the origin, with you standing at the point $(-1,0)$. You throw the ball with a direction given by a slope in the coordinate plane of a rational fraction a / b. Each bounce is perfect, losing no energy and bouncing from the wall with the same angle of reflection as the angle of incidence to a tangent to the wall at the point of impact.

After n bounces, the ball strikes the circle again at some point p which has rational coordinates that can be expressed as $(r / s, t / u)$. Output the fraction r / s modulo the prime $M=1,000,000,007$.

It can be shown that the x coordinate can be expressed as an irreducible fraction r / s, where r and s are integers and $s \not \equiv 0(\bmod M)$. Output the integer equal to $r \cdot s^{-1}(\bmod M)$. In other words, output an integer k such that $0 \leq k<M$ and $k \cdot s \equiv r(\bmod M)$.

For example, if we throw the ball with slope $1 / 2$ and it bounces once, it first strikes the wall at coordinates $(3 / 5,4 / 5)$. After bouncing, it next strikes the wall at coordinates $(7 / 25,-24 / 25)$. The modular inverse of 25 with respect to the prime M is $280,000,002$, and the final result is thus $7 \cdot 280,000,002(\bmod M)=960,000,007$.

Input

The single line of input will contain three integers $a, b\left(1 \leq a, b \leq 10^{9}, \operatorname{gcd}(a, b)=1\right)$ and n ($1 \leq n \leq 10^{12}$), where a / b is the slope of your throw, and n is the number of bounces. Note that a and b are relatively prime.

Output

Output a single integer value as described above.

- Note that Sample 2 corresponds to the example in the problem description.
Sample Input 1 Sample Output 1

13	1000000006

Sample Input 2 Sample Output 2

121	960000007

Sample Input 3	Sample Output 3
$11 \quad 63 \quad 44$	22

Sample Input 4	Sample Output 4
$163 \quad 713 \quad 980$	0

