icpc.foundation

Problem F
 Hopscotch 500
 Time Limit: 2 Second(s)

Do you remember the new art installation from NAC 2020? Well, that artist is at it again, on a grander scale this time, and the new artwork still inspires you-to play a childish game. The art installation consists of a floor with a square matrix of tiles. Each tile holds a single number from 1 to k.

You want to play hopscotch on it! You want to start on some tile numbered 1, then hop to a tile numbered 2 , then 3 , and so on, until you reach a tile numbered k.

Instead of the usual Euclidean distance, define the distance between the tile at $\left(x_{1}, y_{1}\right)$ and the tile at $\left(x_{2}, y_{2}\right)$ as:

$$
\min \left[\left(x_{1}-x_{2}\right)^{2},\left(y_{1}-y_{2}\right)^{2}\right]
$$

You want to hop the shortest total distance overall, using this new distance metric. Note that a path with no hops is still a path, and has length 0 . What is the length of the shortest path?

Input

The first line of input contains two space-separated integers $n(1 \leq n \leq 500)$ and $k\left(1 \leq k \leq n^{2}\right)$, where the art installation consists of an $n \times n$ matrix with tiles having numbers from 1 to k.

Each of the next n lines contains n space-separated integers $x(1 \leq x \leq k)$. These are the numbers in the art installation.

Output

Output a single integer, which is the total length of the shortest path from any 1 tile to any k tile using our distance metric, or -1 if no such path exists.

Sample Output 1

| 10 | 5 | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 1 | 3 | 4 | 2 | 4 | 2 | 1 | 2 | 1 | | | | |
| 4 | 5 | 3 | 4 | 1 | 5 | 3 | 1 | 1 | 4 | | | | |
| 4 | 2 | 4 | 1 | 5 | 4 | 5 | 2 | 4 | 1 | | | | |
| 5 | 2 | 1 | 5 | 5 | 3 | 5 | 2 | 3 | 2 | | | | |
| 5 | 5 | 2 | 3 | 2 | 3 | 1 | 5 | 5 | 5 | | | | |
| 3 | 4 | 2 | 4 | 2 | 2 | 4 | 4 | 2 | 3 | | | | |
| 1 | 5 | 1 | 1 | 2 | 5 | 4 | 1 | 5 | 3 | | | | |
| 2 | 2 | 4 | 1 | 2 | 5 | 1 | 4 | 3 | 5 | | | | |
| 5 | 3 | 2 | 1 | 4 | 3 | 5 | 2 | 3 | 1 | | | | |
| 3 | 4 | 2 | 5 | 2 | 5 | 3 | 4 | 4 | 2 | | | | |

Sample Input 2

1030	19
$\begin{array}{lllllllllll}18 & 13 & 30 & 15 & 18 & 16 & 14 & 1 & 5 & 5\end{array}$	
$\begin{array}{lllllllllll}17 & 18 & 7 & 30 & 14 & 30 & 13 & 14 & 1 & 28\end{array}$	
$\begin{array}{lllllllllll}28 & 24 & 7 & 23 & 9 & 10 & 5 & 12 & 21 & 6\end{array}$	
$\begin{array}{llllllllllll}11 & 16 & 6 & 2 & 27 & 14 & 1 & 26 & 7 & 21\end{array}$	
1629266242212816	
$\begin{array}{llllllllll}17 & 28 & 29 & 19 & 4 & 6 & 21 & 19 & 6 & 22\end{array}$	
$\begin{array}{lllllllllll}12 & 19 & 10 & 21 & 1 & 8 & 20 & 24 & 29\end{array}$	
$\begin{array}{llllllllll}21 & 29 & 1 & 23 & 23 & 24 & 6 & 20 & 25 & 17\end{array}$	

