Tree Number Generator Problem ID: treegenerator

One day Young Anna comes up with a whimsical idea of using a tree to create a number generator. The generator is created with a modulus m and an internal tree of n nodes numbered from 1 to n. Each tree node is assigned a single digit between 0 to 9 . The generator provides a method $G e t(a, b)$ that can be used to produce an integer in $[0, m)$. The two arguments a and b specify two tree nodes. The generator walks the path from a to b in the tree, concatenates all the digits along the path (including the digits of node a and b), and obtains a decimal integer v as a result of such digit concatenation. Note that v can be quite large and may contain leading zeroes. The return value of $\operatorname{Get}(a, b)$ is v modulo m.

Given a tree and the value of m to be used by Anna's number generator, calculate the return values of q queries $\operatorname{Get}(a, b)$.

Input

The first line of input has three integers $n\left(2 \leq n \leq 2 \cdot 10^{5}\right), m\left(1 \leq m \leq 10^{9}\right)$, and $q\left(1 \leq q \leq 2 \cdot 10^{5}\right)$.
The next $n-1$ lines describe the tree edges. Each line has two integers $x, y(1 \leq x, y \leq n)$ listing an edge connecting node x and node y. It is guaranteed that those edges form a tree.
The next n lines each have a single digit between 0 to 9 . The i th digit is assigned to node i.
The next q lines each have two integers $a, b(1 \leq a, b \leq n)$ specifying a query $\operatorname{Get}(a, b)$.

Output

For each $G e t(a, b)$ query output its return value on a single line.

Sample Input 1

Sample Output 1

1004
2
3
4
3
1
2
3
0
4
15
51
42
33

