Subprime
 Problem ID: subprime2

There is an open math problem: Is every non-negative integer a substring of at least one prime number when expressed in base ten?

A positive integer is a prime number if it is greater than one and not a product of two smaller positive integers. Integer a is a substring of integer b if it is equal to an integer derived from b by deleting zero or more consecutive digits of the most and least significant digits of b. For example, 123 is a substring of: $\underline{123}, 56123,123789,501823 \underline{123} 65,4 \underline{1237912123}$.

Given two integers l and h along with an integer p, you are to check how many primes between the l th smallest prime and the h th smallest prime (both ends are inclusive) contain a substring that
 equals p. We are interested in substrings that may include significant leading zeroes, and thus p may have leading zeroes. A prime shall be counted only once even if the integer p occurs more than once as its substring.

For example, consider $l=1, h=10$ and $p=9$. This is a search from the 1 st smallest prime (2) to the 10 th smallest prime (29) for any prime containing the substring " 9 ". There are 2 such primes: $1 \underline{9}$ and $2 \underline{9}$.

Input

The first line of input has two integers l and $h\left(1 \leq l \leq h \leq 10^{5}\right)$. The second line has a sequence of 1 to 6 digits giving the integer p, which may be zero or have significant leading zeroes.

Output

Output the count of prime numbers in the given range that contain p as a substring.
Sample Input 1 Sample Output 1

1	10
9	2

Sample Input 2 Sample Output 2

5001000	26

Sample Input 3 Sample Output 3

11000	10

