Problem E Gambling Game

The Ionian Commission on Procuring Cash has come up with a new gambling game to raise funds for the government. The game is played as follows: Each week, the government will televise a set of m balls (numbered $1 \dots m$) being selected one at a time without replacement. Anyone who wants to play will have to buy a game card. Each card contains n squares (where $n \le m/2$) and in each square are two numbers between 1 and m. No number appears more than once on a card. A sample card is shown in Figure E.1.

2 8	96	35	1 10
Win on selection: 5			

Figure E.1: Sample game card with m = 10, n = 4 and p = 5.

After each ball is selected, players cover any square which contains that number (there will be at most one such square on any card). Each game card also has a number p printed on it, and a contestant wins if he or she covers all n squares after exactly p ball selections (i.e., prior to the p^{th} selection, they only had n-1 squares covered). Before issuing cards to its citizens, the government would like to get an idea of the likelihood of winning for various values of m, n and p so they can set up the payoffs appropriately. They have procured you to write a program to solve this problem.

Input

Input consists of a single line containing 3 integers m, n and p, as described above, where $2 \le m \le 33$, $0 \le n \le m/2$ and $0 \le p \le m$.

Output

Output the probability of winning on the p^{th} selection as a fraction x/y in simplest form.

Sample Input 1	Sample Output 1
10 4 5	8/45

Sample Input 2	Sample Output 2
10 4 3	0/1