Problem I
 Slide Count

In your programming class, you are given an assignment to analyze an integer array using a sliding window algorithm. Specifically, given N integers w_{1}, \ldots, w_{N} and some constant C, the sliding window algorithm maintains start and end indices s and e such that

- initially $s=e=1$;
- as long as $s \leq N$:
- if $e+1>N$, then increment s;
- else if $w_{s}+\cdots+w_{e+1}>C$, then increment s;
- else increment e.

During the execution of this algorithm, each distinct pair of indices (s, e) defines a window. An element w_{i} belongs to the window defined by (s, e) if $s \leq i \leq e$. Notice that if $s>e$, the window is empty.

Consider the first sample input below. The windows appearing during the execution of the algorithm are defined by $(1,1),(1,2),(1,3),(2,3),(3,3),(3,4),(4,4),(5,4),(5,5)$, and $(6,5)$.

For each element w_{i}, determine how many different windows it belongs to during the execution of the sliding window algorithm.

Input

The first line of input contains two integers $N(1 \leq N \leq 100000)$, which is the number of elements, and C $(1 \leq C \leq 1000000)$, which is the sliding window constant.

The next line contains N integers $w_{1}, \ldots, w_{N}\left(0 \leq w_{i} \leq C\right)$.

Output

For each element, in order, display the number of different windows it belongs to during the execution of the algorithm.

Sample Input 1	Sample Output 1				
5	3			3	
1	1	1	2	2	3
				4	
				2	
		1			

| Sample Input 2 | Sample Output 2 |
| :--- | :--- | :--- | :--- | :--- |
| 5 10 4
 1 2 3 4 5
 4
 4
 5
 | |

