Problem B. Double Clique

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

You are given an undirected graph G with n nodes and m edges. The set of vertices is V and the set of edges is E.

Let the *Complement* of G be G'. The *Complement* of a graph is a graph with all of the same nodes, but if there's no edge between nodes a and b in G, then there is an edge between a and b in G', and if there is an edge between a and b in G, then there is no edge between a and b in G'.

A *Clique* is a subset of nodes that have an edge between every pair. A subset of nodes S is called a *Double Clique* if S forms a clique in G, and V - S forms a clique in G'. Note that an empty set of nodes is considered a clique.

Given a graph, count the number of double cliques in the graph modulo $10^9 + 7$.

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. Each test case will begin with a line with two integers n and m $(1 \le n, m \le 2 \times 10^5)$, where n is the number of nodes and m is the number of edges in the graph. The nodes are numbered 1..n. Each of the next m lines will contain two integers a and b $(1 \le a < b \le n)$, representing an edge between nodes a and b. The edges are guaranteed to be unique.

Output

Output a single integer, which is the number of Double Cliques in the graph modulo $10^9 + 7$.

Examples

standard input	standard output
3 3	4
1 3	
1 2	
2 3	