Problem B. Double Clique

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

You are given an undirected graph G with n nodes and m edges. The set of vertices is V and the set of edges is E.
Let the Complement of G be G^{\prime}. The Complement of a graph is a graph with all of the same nodes, but if there's no edge between nodes a and b in G, then there is an edge between a and b in G^{\prime}, and if there is an edge between a and b in G, then there is no edge between a and b in G^{\prime}.

A Clique is a subset of nodes that have an edge between every pair. A subset of nodes S is called a Double Clique if S forms a clique in G, and $V-S$ forms a clique in G^{\prime}. Note that an empty set of nodes is considered a clique.
Given a graph, count the number of double cliques in the graph modulo $10^{9}+7$.

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. Each test case will begin with a line with two integers n and $m\left(1 \leq n, m \leq 2 \times 10^{5}\right)$, where n is the number of nodes and m is the number of edges in the graph. The nodes are numbered 1..n. Each of the next m lines will contain two integers a and $b(1 \leq a<b \leq n)$, representing an edge between nodes a and b. The edges are guaranteed to be unique.

Output

Output a single integer, which is the number of Double Cliques in the graph modulo $10^{9}+7$.

Examples

	standard input	standard output
3	3	4
1	3	
1	2	
2	3	

