Problem I. Red Black Tree

Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: $\quad 512$ mebibytes

You are given a rooted tree with n nodes. The nodes are numbered $1 . . n$. The root is node 1 , and m of the nodes are colored red, the rest are black.
You would like to choose a subset of nodes such that there is no node in your subset which is an ancestor of any other node in your subset. For example, if A is the parent of B and B is the parent of C, then you could have at most one of A, B or C in your subset. In addition, you would like exactly k of your chosen nodes to be red.
If exactly m of the nodes are red, then for all $k=0 . . m$, figure out how many ways you can choose subsets with k red nodes, and no node is an ancestor of any other node.

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. Each test case will begin with a line with two integers $n\left(1 \leq n \leq 2 \times 10^{5}\right)$ and m $\left(0 \leq m \leq \min \left(10^{3}, n\right)\right)$, where n is the number of nodes in the tree, and m is the number of nodes which are red. The nodes are numbered 1..n.
Each of the next $n-1$ lines will contain a single integer $p(1 \leq p \leq n)$, which is the number of the parent of this node. The nodes are listed in order, starting with node 2 , then node 3 , and so on. Node 1 is skipped, since it is the root. It is guaranteed that the nodes form a single tree, with a single root at node 1 and no cycles.
Each of the next m lines will contain single integer $r(1 \leq r \leq n)$. These are the numbers of the red nodes. No value of r will be repeated.

Output

Output $m+1$ lines, corresponding to the number of subsets satisfying the given criteria with a number of red nodes equal to $k=0 . . m$, in that order. Output this number modulo $10^{9}+7$.

XVIII Open Cup named after E.V. Pankratiev
Stage 16: Grand Prix of America, Sunday, March 25, 2018

Examples

standard input	standard output
$\begin{array}{ll} 4 & 1 \\ 1 & \\ 1 & \\ 1 & \\ 3 & \end{array}$	$\begin{aligned} & 5 \\ & 4 \end{aligned}$
$\begin{aligned} & 44 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	1 4 3 1 0
144 1 2 1 2 3 4 5 5 13 8 10 4 4 8 3 12 13	$\begin{aligned} & \hline 100 \\ & 169 \\ & 90 \\ & 16 \\ & 0 \end{aligned}$

