Problem I. Red Black Tree

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

You are given a rooted tree with n nodes. The nodes are numbered 1..n. The root is node 1, and m of the nodes are colored red, the rest are black.

You would like to choose a subset of nodes such that there is no node in your subset which is an ancestor of any other node in your subset. For example, if A is the parent of B and B is the parent of C, then you could have at most one of A, B or C in your subset. In addition, you would like exactly k of your chosen nodes to be red.

If exactly m of the nodes are red, then for all k = 0..m, figure out how many ways you can choose subsets with k red nodes, and no node is an ancestor of any other node.

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. Each test case will begin with a line with two integers n $(1 \le n \le 2 \times 10^5)$ and m $(0 \le m \le min(10^3, n))$, where n is the number of nodes in the tree, and m is the number of nodes which are red. The nodes are numbered 1..n.

Each of the next n-1 lines will contain a single integer p $(1 \le p \le n)$, which is the number of the parent of this node. The nodes are listed in order, starting with node 2, then node 3, and so on. Node 1 is skipped, since it is the root. It is guaranteed that the nodes form a single tree, with a single root at node 1 and no cycles.

Each of the next m lines will contain single integer r $(1 \le r \le n)$. These are the numbers of the red nodes. No value of r will be repeated.

Output

Output m + 1 lines, corresponding to the number of subsets satisfying the given criteria with a number of red nodes equal to k = 0..m, in that order. Output this number modulo $10^9 + 7$.

Examples

standard input	standard output
4 1	5
1	4
1	
1	
3	
4 4	1
1	4
1	3
1	1
1	0
2	
3	
4	
14 4	100
1	169
2	90
1	16
2	0
3	
4	
5	
5	
13	
8	
10	
4	
4	
8	
3	
12	
13	